We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive pseudonymised information about your use of our website. cookie policy and privacy policy.
 
+0  
 
0
202
2
avatar

The polynomial f(x) has degree 3. If f(-1)=15, f(0)=0, f(1)=-5, and f(2)=12, then what are x-intercepts of the graph f?

 

If you guys could solve this within the next day that would be great! : )

 Sep 4, 2018
 #1
avatar+100800 
+1

 

The polynomial f(x) has degree 3. If f(-1)=15, f(0)=0, f(1)=-5, and f(2)=12, then what are x-intercepts of the graph f?

 

\(f(x)=ax^3+bx^2+cx+d\)


 

\(f(0)=0\qquad so \qquad d=0\\ f(x)=ax^3+bx^2+cx\)


\(also\\ f(-1)=15,\;\;  f(1)=-5, \;\;and \;\; f(2)=12\)

 

so

 

\(f(-1)=-a+b-c=15\qquad(1)\\ f(1)=a+b+c = -5\qquad\quad(2)\\ f(2)=8a+4b+2c=12\qquad(3)\\ (1)+(2) 2b=10\\ b=5\\\)

Now we have

 

\(-a+5-c=15\qquad(1)\\ a+c=-10 \qquad \qquad (1b)\\ \\~\\ 8a+20+2c=12\qquad(3)\\ 4a+10+c=6 \\ 4a+c=-4 \qquad \qquad(3b)\\ \\~\\ (3b)-(1b)\\ 3a=6\\ a=2\\ c=-12 \)

 

 

\(f(x)=ax^3+bx^2+cx\\ f(x)=2x^3+5x^2-12x\\ f(x)=x(2x^2+5x-12)\\ f(x)=x(2x^2+8x-3x-12)\\ f(x)=x[2x(x+4)-3(x+4)]\\ f(x)=x[(2x-3)(x+4)]\\ \text{Roots are x = 0, 1.5 and -4}\)

.
 Sep 4, 2018
 #2
avatar
+1

Thank : )

Guest Sep 4, 2018

6 Online Users

avatar