+0  
 
0
73
2
avatar

The polynomial f(x) has degree 3. If f(-1)=15, f(0)=0, f(1)=-5, and f(2)=12, then what are x-intercepts of the graph f?

 

If you guys could solve this within the next day that would be great! : )

Guest Sep 4, 2018
 #1
avatar+93876 
+1

 

The polynomial f(x) has degree 3. If f(-1)=15, f(0)=0, f(1)=-5, and f(2)=12, then what are x-intercepts of the graph f?

 

\(f(x)=ax^3+bx^2+cx+d\)


 

\(f(0)=0\qquad so \qquad d=0\\ f(x)=ax^3+bx^2+cx\)


\(also\\ f(-1)=15,\;\;  f(1)=-5, \;\;and \;\; f(2)=12\)

 

so

 

\(f(-1)=-a+b-c=15\qquad(1)\\ f(1)=a+b+c = -5\qquad\quad(2)\\ f(2)=8a+4b+2c=12\qquad(3)\\ (1)+(2) 2b=10\\ b=5\\\)

Now we have

 

\(-a+5-c=15\qquad(1)\\ a+c=-10 \qquad \qquad (1b)\\ \\~\\ 8a+20+2c=12\qquad(3)\\ 4a+10+c=6 \\ 4a+c=-4 \qquad \qquad(3b)\\ \\~\\ (3b)-(1b)\\ 3a=6\\ a=2\\ c=-12 \)

 

 

\(f(x)=ax^3+bx^2+cx\\ f(x)=2x^3+5x^2-12x\\ f(x)=x(2x^2+5x-12)\\ f(x)=x(2x^2+8x-3x-12)\\ f(x)=x[2x(x+4)-3(x+4)]\\ f(x)=x[(2x-3)(x+4)]\\ \text{Roots are x = 0, 1.5 and -4}\)

Melody  Sep 4, 2018
 #2
avatar
+1

Thank : )

Guest Sep 4, 2018

15 Online Users

avatar

New Privacy Policy

We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive information about your use of our website.
For more information: our cookie policy and privacy policy.