+0

# The polynomial f(x) has degree 3. If f(-1)=15, f(0)=0, f(1)=-5, and f(2)=12, then what are x-intercepts of the graph f?

0
202
2

The polynomial f(x) has degree 3. If f(-1)=15, f(0)=0, f(1)=-5, and f(2)=12, then what are x-intercepts of the graph f?

If you guys could solve this within the next day that would be great! : )

Sep 4, 2018

#1
+100800
+1

The polynomial f(x) has degree 3. If f(-1)=15, f(0)=0, f(1)=-5, and f(2)=12, then what are x-intercepts of the graph f?

$$f(x)=ax^3+bx^2+cx+d$$

$$f(0)=0\qquad so \qquad d=0\\ f(x)=ax^3+bx^2+cx$$

$$also\\ f(-1)=15,\;\; f(1)=-5, \;\;and \;\; f(2)=12$$

so

$$f(-1)=-a+b-c=15\qquad(1)\\ f(1)=a+b+c = -5\qquad\quad(2)\\ f(2)=8a+4b+2c=12\qquad(3)\\ (1)+(2) 2b=10\\ b=5\\$$

Now we have

$$-a+5-c=15\qquad(1)\\ a+c=-10 \qquad \qquad (1b)\\ \\~\\ 8a+20+2c=12\qquad(3)\\ 4a+10+c=6 \\ 4a+c=-4 \qquad \qquad(3b)\\ \\~\\ (3b)-(1b)\\ 3a=6\\ a=2\\ c=-12$$

$$f(x)=ax^3+bx^2+cx\\ f(x)=2x^3+5x^2-12x\\ f(x)=x(2x^2+5x-12)\\ f(x)=x(2x^2+8x-3x-12)\\ f(x)=x[2x(x+4)-3(x+4)]\\ f(x)=x[(2x-3)(x+4)]\\ \text{Roots are x = 0, 1.5 and -4}$$

.
Sep 4, 2018
#2
+1

Thank : )

Guest Sep 4, 2018