+0  
 
0
326
1
avatar

The polynomial f(x) has degree 3. If f(-1) = 15f(0)= 0f(1) = -5, and f(2) = 12, then what are the x-intercepts of the graph of f?

 

Please explain very well in this question. I am so sorry! I just need a little help.

Guest Dec 4, 2014

Best Answer 

 #1
avatar+19495 
+10

----------------------------------------------------------

The polynomial f(x) has degree 3. If f(-1) = 15f(0)= 0f(1) = -5, and f(2) = 12, then what are the x-intercepts of the graph of f(x)?

$$\small{\text{The polynomial f(x) of degree 3 is }} f(x) = ax^3+bx^2+cx+d$$

I.  We need a, b, c and d :

$$\small{\text{
\begin{array}{r|r|lrclrclccl}
\hline
x & y & &f(x)& =& ax^3+bx^2+cx+d & && &\textcolor[rgb]{1,0,0}{d}&\textcolor[rgb]{1,0,0}{=}&\textcolor[rgb]{1,0,0}{0} \\
\hline
-1 & 15& (1) & 15 &=& a(-1)^3+b(-1)^2+c(-1) +d & 15&=& -a+b-c+d & 15&=&-a+b-c\\
0 & 0 & (2) & 0 &=& a(0)^3+b(0)^2+c(0) +d & \textcolor[rgb]{1,0,0}{0} &\textcolor[rgb]{1,0,0}{=}& \textcolor[rgb]{1,0,0}{d} & -5&=&a+b+c\\
1 & -5 & (3) & -5 &=& a(1)^3+b(1)^2+c(1) +d & -5 &=& a+b+c+d & \\
2 & 12 & (4) & 12 &=& a(2)^3+b(2)^2+c(2) +d & 12 &=& 8a+4b+2c+d & 12 &=& 8a+4b+2c\\
\hline
\end{array}
}}$$

d=0:

(1) -a + b - c = 15

(2)  a + b + c = -5

(4) 8a+4b+2c = 12 | :2    $$\Rightarrow$$   (4) 4a + 2b + c = 6

----------------------------------------------------------

(1)+(2): 2b = 10  $$\Rightarrow$$  $$\textcolor[rgb]{1,0,0}{ b = 5}$$

----------------------------------------------------------

b=5:

(1)   a + c = -10

(2)   a + c = -10

(4) 4a + c =  -4

----------------------------------------------------------

(4)-(2): 3a = -4 -(-10) = 6  $$\Rightarrow$$  3a = -4+10  $$\Rightarrow$$  3a = 6   =>  $$\textcolor[rgb]{1,0,0}{a=2}$$ 

(1)  2 + c = -10  $$\Rightarrow$$  $$\textcolor[rgb]{1,0,0}{c = -12}$$

$$\small{\text{The polynomial f(x) of degree 3 is }} f(x) = 2x^3+5x^2-12x+0$$

 

II.  x-intercepts of the graph of $$f(x)$$?

 

$$2x^3+5x^2-12x = 0 \\
\underbrace{x}_{=0}*\underbrace{( 2x^2+5x-12 )}_{=0} = 0 \\\\
\textcolor[rgb]{1,0,0}{x_1 = 0} \\\\
2x^2+5x-12 = 0 \quad | \quad\textcolor[rgb]{0,0,1}{ ax^2+bx+c=0 => x=\frac{-b\pm\sqrt{b^2-4ac}}{2a} } \\\\
x_{2,3}=\frac{-5\pm\sqrt{25-4*2*(-12)} }{4} \\\\
x_{2,3}=\frac{-5\pm\sqrt{121} }{4} \\\\
x_{2,3}=\frac{-5\pm\11 }{4} \\\\
x_2=\frac{-5+11 }{4} = \frac{6}{4} = 1.5 \quad \Rightarrow \quad \textcolor[rgb]{1,0,0}{x_2=1.5} \\\\
x_3=\frac{-5-11 }{4} = \frac{-16}{4} = -4 \quad \Rightarrow \quad \textcolor[rgb]{1,0,0}{x_3=-4} \\\\$$

The x-intercepts are: -4, 0 and 1.5

heureka  Dec 4, 2014
 #1
avatar+19495 
+10
Best Answer

----------------------------------------------------------

The polynomial f(x) has degree 3. If f(-1) = 15f(0)= 0f(1) = -5, and f(2) = 12, then what are the x-intercepts of the graph of f(x)?

$$\small{\text{The polynomial f(x) of degree 3 is }} f(x) = ax^3+bx^2+cx+d$$

I.  We need a, b, c and d :

$$\small{\text{
\begin{array}{r|r|lrclrclccl}
\hline
x & y & &f(x)& =& ax^3+bx^2+cx+d & && &\textcolor[rgb]{1,0,0}{d}&\textcolor[rgb]{1,0,0}{=}&\textcolor[rgb]{1,0,0}{0} \\
\hline
-1 & 15& (1) & 15 &=& a(-1)^3+b(-1)^2+c(-1) +d & 15&=& -a+b-c+d & 15&=&-a+b-c\\
0 & 0 & (2) & 0 &=& a(0)^3+b(0)^2+c(0) +d & \textcolor[rgb]{1,0,0}{0} &\textcolor[rgb]{1,0,0}{=}& \textcolor[rgb]{1,0,0}{d} & -5&=&a+b+c\\
1 & -5 & (3) & -5 &=& a(1)^3+b(1)^2+c(1) +d & -5 &=& a+b+c+d & \\
2 & 12 & (4) & 12 &=& a(2)^3+b(2)^2+c(2) +d & 12 &=& 8a+4b+2c+d & 12 &=& 8a+4b+2c\\
\hline
\end{array}
}}$$

d=0:

(1) -a + b - c = 15

(2)  a + b + c = -5

(4) 8a+4b+2c = 12 | :2    $$\Rightarrow$$   (4) 4a + 2b + c = 6

----------------------------------------------------------

(1)+(2): 2b = 10  $$\Rightarrow$$  $$\textcolor[rgb]{1,0,0}{ b = 5}$$

----------------------------------------------------------

b=5:

(1)   a + c = -10

(2)   a + c = -10

(4) 4a + c =  -4

----------------------------------------------------------

(4)-(2): 3a = -4 -(-10) = 6  $$\Rightarrow$$  3a = -4+10  $$\Rightarrow$$  3a = 6   =>  $$\textcolor[rgb]{1,0,0}{a=2}$$ 

(1)  2 + c = -10  $$\Rightarrow$$  $$\textcolor[rgb]{1,0,0}{c = -12}$$

$$\small{\text{The polynomial f(x) of degree 3 is }} f(x) = 2x^3+5x^2-12x+0$$

 

II.  x-intercepts of the graph of $$f(x)$$?

 

$$2x^3+5x^2-12x = 0 \\
\underbrace{x}_{=0}*\underbrace{( 2x^2+5x-12 )}_{=0} = 0 \\\\
\textcolor[rgb]{1,0,0}{x_1 = 0} \\\\
2x^2+5x-12 = 0 \quad | \quad\textcolor[rgb]{0,0,1}{ ax^2+bx+c=0 => x=\frac{-b\pm\sqrt{b^2-4ac}}{2a} } \\\\
x_{2,3}=\frac{-5\pm\sqrt{25-4*2*(-12)} }{4} \\\\
x_{2,3}=\frac{-5\pm\sqrt{121} }{4} \\\\
x_{2,3}=\frac{-5\pm\11 }{4} \\\\
x_2=\frac{-5+11 }{4} = \frac{6}{4} = 1.5 \quad \Rightarrow \quad \textcolor[rgb]{1,0,0}{x_2=1.5} \\\\
x_3=\frac{-5-11 }{4} = \frac{-16}{4} = -4 \quad \Rightarrow \quad \textcolor[rgb]{1,0,0}{x_3=-4} \\\\$$

The x-intercepts are: -4, 0 and 1.5

heureka  Dec 4, 2014

8 Online Users

avatar

New Privacy Policy

We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive information about your use of our website.
For more information: our cookie policy and privacy policy.