We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive pseudonymised information about your use of our website.
Please click on "Accept cookies" if you agree to the setting of cookies. Cookies that do not require consent remain unaffected by this, see
cookie policy and privacy policy.
DECLINE COOKIES

Please give me a detailed solution for the question

Let n > 18 be a positive integer such that n-1 and n+1 both are prime .

Prove that n has at least 8 different positive factors .

Darkside Nov 10, 2018

#2**0 **

60 =2^{2} x 3 x 5 =3 "Prime Factors"

Total divisors =The exponent of each "Prime Factor" + 1, all multiplied together: (2+1) x (1+1)x(1+1) =12 divisors:

1 | 2 | 3 | 4 | 5 | 6 | 10 | 12 | 15 | 20 | 30 | 60 (12 divisors), or factors.

60 - 1 =59 Prime number

60+1 =61 Prime number.

Guest Nov 10, 2018

#4**0 **

35802 =2 x 3^{4} x 13 x 17 =4 "Prime Factors"

Total divisors =The exponent of each "Prime Factor" + 1, all multiplied together: (1+1) x (4+1)x(1+1)x(1+1) =40 divisors:

1 | 2 | 3 | 6 | 9 | 13 | 17 | 18 | 26 | 27 | 34 | 39 | 51 | 54 | 78 | 81 | 102 | 117 | 153 | 162 | 221 | 234 | 306 | 351 | 442 | 459 | 663 | 702 | 918 | 1053 | 1326 | 1377 | 1989 | 2106 | 2754 | 3978 | 5967 | 11934 | 17901 | 35802 (40 divisors), or factors

35802 - 1 =35801 Prime number

35802+1 =35803 Prime number.

Guest Nov 10, 2018

#6**+1 **

This question applies only to those composite numbers that are between 2 "Twin Primes" that are >18. Here is a list of twin primes >18 and <1,000. (29, 31) | (41, 43) | (59, 61) | (71, 73) | (101, 103) | (107, 109) | (137, 139) | (149, 151) | (179, 181) | (191, 193) | (197, 199) | (227, 229) | (239, 241) | (269, 271) | (281, 283) | (311, 313) | (347, 349) | (419, 421) | (431, 433) | (461, 463) | (521, 523) | (569, 571) | (599, 601) | (617, 619) | (641, 643) | (659, 661) | (809, 811) | (821, 823) | (827, 829) | (857, 859) | (881, 883) ...

The definition of a prime number is that it has ONLY 2 prime divisors, i.e., itself and 1. Since two prime divisors will only have 2 exponents, which would only give:(1+1) x (1+1)=4 divisors. A composite number between 2 twin primes must, by definition, necessarily have at least (1+1) extra divisor for a total of: (1+1) x (1+1) x (1+1) =8 divisors as " a minimum" to distinguish it from a prime number which MUST have only 4 divisors. And that is the best that I can give you as a "proof".

Guest Nov 11, 2018

edited by
Guest
Nov 11, 2018