+0  
 
0
145
3
avatar+53 

The real numbers \(a\) and \(b\) satisfy \(|a| < 1\) and \(|b| < 1.\)

(a) In a grid that extends infinitely, the first row contains the numbers \(1, a, a^2, \dots.\)  The second row contains the numbers \(b, ab, a^2b, \dots\)    In general, each number is multiplied by \(a\) to give the number to the right of it, and each number is multiplied by \(b\) to give the number below it.

Find the sum of all numbers in the grid.
 

 

(b) Now suppose the grid is colored like a chessboard, with alternating black and white squares, as shown below. Find the sum of all the numbers that lie on the black squares.

 

 

Thank you!

-NerdWallet

 May 14, 2020
edited by PharaoCarl  May 14, 2020
 #1
avatar
0

Isn't this AoPS homework?

 May 14, 2020
 #2
avatar
0

Yes, this is AoPS homework, so no one should answer this question.

 May 14, 2020
 #3
avatar+53 
0

Sorry, whats aops?

 May 15, 2020

26 Online Users

avatar
avatar