The roots a and b are \(\frac{-5 \pm \sqrt{69}}{3}\)
so (a + 3)(b + 3) = \((-\frac{5 + \sqrt{69}}{3} + 3)(-\frac{5 - \sqrt{69}}{3} + 3) = -21\)
Adding onto Guest's answer:
You use the quadratic formula to find the roots of y^2+5y-11.
The quadratic formula is:
-b+-sqrt(b^2-4ac) / 2a
So, in this case, a=1, b=5, and c=-11