The side of a square a = 2cm ( a = r ). Find the areas of: X, Y and Z.
Using some calculus (and symmetry), we have
z = (in sq cm)
I'll use a more exact value = 0.1735540900379272 sq cm.
And solving some equations, we have
4 - pi = y + 2z → y = 4 - pi - 2z = 4 - pi - 2(0.1735540900379272) ≈ 0.5112991663343523615 sq cm
And
x + 3y + 2z = pi → x = pi - 3y - 2z =
pi - 3(0.5112991663343523615) - 2( 0.1735540900379272)
≈ 1.2605869745108817539626 sq cm
Check
x + 4y + 4z = 4 ???
1.2605869745108817539626+ 4(0.5112991663343523615 )+ 4(0.1735540900379272) =
3.9999999999999999999626 sq cm
Close enough !!!!
Using some calculus (and symmetry), we have
z = (in sq cm)
I'll use a more exact value = 0.1735540900379272 sq cm.
And solving some equations, we have
4 - pi = y + 2z → y = 4 - pi - 2z = 4 - pi - 2(0.1735540900379272) ≈ 0.5112991663343523615 sq cm
And
x + 3y + 2z = pi → x = pi - 3y - 2z =
pi - 3(0.5112991663343523615) - 2( 0.1735540900379272)
≈ 1.2605869745108817539626 sq cm
Check
x + 4y + 4z = 4 ???
1.2605869745108817539626+ 4(0.5112991663343523615 )+ 4(0.1735540900379272) =
3.9999999999999999999626 sq cm
Close enough !!!!