+0

# The square with vertices \$(-a, -a), (a, -a), (-a, a), (a, a)\$ is cut by the line \$y = x/2\$ into congruent quadrilaterals. The perimeter of o

0
104
1
+598

The square with vertices \$(-a, -a), (a, -a), (-a, a), (a, a)\$ is cut by the line \$y = x/2\$ into congruent quadrilaterals. The perimeter of one of these congruent quadrilaterals divided by \$a\$ equals what? Express your answer in simplified radical form.

michaelcai  Oct 31, 2017
Sort:

#1
+82752
+1

y  =  x/2

This line will  intersect the square at x values  -a  and a

So....the associated y values are

y =  (-a)/2  =  -a/2     and   (a)/2

So....the perimeter of one of the quadrilaterals =

2a  +  [(a) -  (-a/2)] + [(a) - a/2 ]  +  sqrt  [ ( a - (-a)) ^2 + ( a/2 - (-a/2)^2]  =

2a  + 3a/2  + a/2  +  sqrt  [ 4a^2  + a^2 ]  =

4a  +  a√ 5    dividing this by a  produces  =

4  + √ 5

CPhill  Oct 31, 2017

### 24 Online Users

We use cookies to personalise content and ads, to provide social media features and to analyse our traffic. We also share information about your use of our site with our social media, advertising and analytics partners.  See details