We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive pseudonymised information about your use of our website. cookie policy and privacy policy.
 
+0  
 
+1
342
2
avatar+1438 

The sum of the first n terms in the infinite geometric sequence {1/4, 1/8, 1/16, ...} is 255/512. Find n.

 

👍 👍 

 Jan 16, 2018
 #1
avatar+103858 
+1

The common ratio, r,  can be determined  as  the ratio of the terms

 

an+1  / an    so we have....  (1/8)  / (1/4)   =  4/8  =  1/2

 

And we have that

 

255/512  =  1/4  [  1 -  (1/2)^n ] /  [  1  - 1/2  ]

 

255/512 =   1/4   [ 1 - (1/2)^n ]  /  (1/2)

 

255/512  =  (1/2)  [ 1 - (1/2)^n ]     multiply both sdes by  2

 

255* 2 / 512   =  1 - (1/2)^n  rearrange  as

 

(1/2)^n  =  1  -  510/512

 

(1/2)^n   =  [ 512  - 510 ] / 512    =  2 / 512  =   1/256

 

Take the log of both sides

 

log (1/2)^n  =  log (1/256)     and we can write

 

n  =  log (1/256) / log (1/2)

 

n  =   8    ⇒  8 terms

 

 

cool cool cool

 Jan 16, 2018
 #2
avatar+1438 
+2

Thanks so much!

AnonymousConfusedGuy  Jan 16, 2018

11 Online Users

avatar
avatar