+0  
 
+1
1786
4
avatar+422 

The sume of the first 100 positive multiples of 4 is _ more than the sum of the first 100 positive multiples of 3.
 

Answer Choices

A. 100

B. 400

C. 1200

D. 5050

 Feb 6, 2019
 #1
avatar+4622 
+1

Compare the sums for a second: 

4+8+12+16+20+24

3+6+9+12+15+18

 

Sum of the first 100 positive integers, so 5050 or (D).

 Feb 6, 2019
 #3
avatar
0

That is correct: sum of 1 to 100 =5050.

Guest Feb 6, 2019
 #2
avatar+80 
+1

The arithmetic sum formula shows that:

 

\(\text{sum} = 100(\frac{4+100}{2}) = 5200\)

 

\(\text{sum} = 100(\frac{3+100}{2}) = 5150\)

 

The difference is 5200 - 5150 = 50.

 Feb 6, 2019
 #4
avatar+129899 
+1

tertre is correct

 

4 + 8 + 12 + 16 +.....+  400

3 + 6  + 9  + 12 +.....+  300

 

The difference in the series is

 

1 + 2 + 3 + 4 + ....+ 100   =  the sum of the first 100 positive integers =   100 (101) / 2  =  50 * 101 = 5050

 

 

cool cool cool cool

 Feb 6, 2019

0 Online Users