We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive pseudonymised information about your use of our website. cookie policy and privacy policy.
 
+0  
 
+1
153
4
avatar+404 

The sume of the first 100 positive multiples of 4 is _ more than the sum of the first 100 positive multiples of 3.
 

Answer Choices

A. 100

B. 400

C. 1200

D. 5050

 Feb 6, 2019
 #1
avatar+4296 
+1

Compare the sums for a second: 

4+8+12+16+20+24

3+6+9+12+15+18

 

Sum of the first 100 positive integers, so 5050 or (D).

 Feb 6, 2019
 #3
avatar
0

That is correct: sum of 1 to 100 =5050.

Guest Feb 6, 2019
 #2
avatar+79 
+1

The arithmetic sum formula shows that:

 

\(\text{sum} = 100(\frac{4+100}{2}) = 5200\)

 

\(\text{sum} = 100(\frac{3+100}{2}) = 5150\)

 

The difference is 5200 - 5150 = 50.

 Feb 6, 2019
 #4
avatar+101870 
+1

tertre is correct

 

4 + 8 + 12 + 16 +.....+  400

3 + 6  + 9  + 12 +.....+  300

 

The difference in the series is

 

1 + 2 + 3 + 4 + ....+ 100   =  the sum of the first 100 positive integers =   100 (101) / 2  =  50 * 101 = 5050

 

 

cool cool cool cool

 Feb 6, 2019

9 Online Users

avatar
avatar
avatar