We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive pseudonymised information about your use of our website. cookie policy and privacy policy.
 
+0  
 
+1
87
1
avatar+210 

The terms of a particular sequence are determined according to the following rules:
* If the value of a given term is an odd positive integer s, then the value of the following term is 3s-9
* If the value of a given term is an even positive integer l, then the value of the following term is 2t-7.
Suppose that the terms of the sequence alternate between two positive integers (a, b, a, b, ...). What is the sum of the two positive integers?

 Mar 22, 2019
 #1
avatar+5172 
+1

\(\text{suppose }a \text{ is odd}\\ b = 3a-9\text{ is even}\\ a = 2(3a-9)-7 = 6a-25\\ 5a=25\\ a=5,~b = 6,~a+b=11\)

 

\(\text{suppose }a \text{ is even}\\ b = 2a-7\text{ is odd}\\ a = 3(2a-7)-9= 6a-30\\ 5a=30\\ a=6,~b=5,~a+b=11\)

.
 Mar 23, 2019

12 Online Users

avatar
avatar