We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive pseudonymised information about your use of our website. cookie policy and privacy policy.
 
+0  
 
+2
1485
2
avatar+601 

The value
\(\left(\frac{1+\sqrt 3}{2\sqrt 2}+\frac{\sqrt 3-1}{2\sqrt 2}i\right)^{72}\)
is a positive real number. What real number is it?

 Dec 14, 2017

Best Answer 

 #2
avatar+102422 
+1

 

We can write

 

[   (1 + sqrt (3)   +  sqrt (3)i  - 1i  ] ^72  / sqrt (8)^72  =

 

[  ( 1 - i)   +  (1 + i) sqrt(3) ] ^72  / sqrt (8) ^72  =

 

[ [ (1 - i)  + (1 + i)sqrt(3) ]^2 ] ^36 / [sqrt (8)^2]^36 =

 

[ [ (1 - i)  + (1 + i)sqrt(3)]^2 / sqrt (8)^2 ] ^36

 

Forget  about  the exponent of 36  for a second and look at this

 

[ (1 - i)   +  (1 + i) sqrt (3) ] ^2 / [sqrt (8)]^2  =

 

[ (1 - i)(1 - i)   +  2 (1 - i) (1 + i)sqrt (3)  +  (1 + i)(1 + i) *3 ]/8   =

 

[  - 2i  + 2 ( 2)sqrt (3)  + 2i * 3 ]/ 8    =

 

[ 4i + 4 sqrt (3) ]  =   [  4  (  i  +  sqrt (3) ) ]  / 8   =

 

(1/2)  [ sqrt (3)  + i ]

 

So.......we have

 

[ (1/2)^36]  *  [ sqrt (3)  + i ]^36    =   A

 

Looking at  the red part we can write this as

 

(2)^36  ( cos [36 (pi/6)]  + i sin [ 36 (pi/6) ] )  =

 

(2)^36  (  cos [ 6pi ]  +  i sin [6pi] )  =

 

(2)^36  [  1  +  0i ]  =

 

(2)^36

 

So  A   becomes

 

[ (1/2)^36 ] * 2^36  =  [ 2 / 2 ] ^36  =  1^36  =

 

1

 

 

cool cool cool

 Dec 15, 2017
edited by CPhill  Dec 15, 2017
 #1
avatar
0

((1/2 + i/2) (sqrt(3) - i))/sqrt(2)=
Divide: 1 / 2 = 0.5
Divide: i / 2 = 0.5i
Square root: sqrt(3) = √ 3 = 1.7320508
Multiple: (0.5+0.5i) * (1.7320508-i) = 0.866025403784-0.5i+0.866025403784i+0.5 = 1.3660254+0.3660254i
alternative steps
0.7071068 × ei 45° × 2 × ei (-30°) = 0.707106781187 × 2 × ei (45°+(-30°)) = 1.4142136 × ei 15° = 1.3660254+0.3660254i
Square root: sqrt(2) = √ 2 = 1.4142136
Divide: (1.3660254+0.3660254i) / 1.4142136 = 0.9659258+0.258819i =(-1)^(1/12)
(-1)^(1/12)*72 =(-1)^6 =1

 Dec 14, 2017
 #2
avatar+102422 
+1
Best Answer

 

We can write

 

[   (1 + sqrt (3)   +  sqrt (3)i  - 1i  ] ^72  / sqrt (8)^72  =

 

[  ( 1 - i)   +  (1 + i) sqrt(3) ] ^72  / sqrt (8) ^72  =

 

[ [ (1 - i)  + (1 + i)sqrt(3) ]^2 ] ^36 / [sqrt (8)^2]^36 =

 

[ [ (1 - i)  + (1 + i)sqrt(3)]^2 / sqrt (8)^2 ] ^36

 

Forget  about  the exponent of 36  for a second and look at this

 

[ (1 - i)   +  (1 + i) sqrt (3) ] ^2 / [sqrt (8)]^2  =

 

[ (1 - i)(1 - i)   +  2 (1 - i) (1 + i)sqrt (3)  +  (1 + i)(1 + i) *3 ]/8   =

 

[  - 2i  + 2 ( 2)sqrt (3)  + 2i * 3 ]/ 8    =

 

[ 4i + 4 sqrt (3) ]  =   [  4  (  i  +  sqrt (3) ) ]  / 8   =

 

(1/2)  [ sqrt (3)  + i ]

 

So.......we have

 

[ (1/2)^36]  *  [ sqrt (3)  + i ]^36    =   A

 

Looking at  the red part we can write this as

 

(2)^36  ( cos [36 (pi/6)]  + i sin [ 36 (pi/6) ] )  =

 

(2)^36  (  cos [ 6pi ]  +  i sin [6pi] )  =

 

(2)^36  [  1  +  0i ]  =

 

(2)^36

 

So  A   becomes

 

[ (1/2)^36 ] * 2^36  =  [ 2 / 2 ] ^36  =  1^36  =

 

1

 

 

cool cool cool

CPhill Dec 15, 2017
edited by CPhill  Dec 15, 2017

17 Online Users

avatar