+0  
 
0
424
1
avatar+598 

The values of the four variables $a$, $b$, $c$, and $d$ are 9, 11, 13, and 15, though not necessarily in that order. What is the number of possible values of the expression ab+bc+cd+da?

michaelcai  Nov 3, 2017
 #1
avatar+93044 
+1

I'll give this one a shot.....whether it's correct....Mmmmmm...!!!!!

 

ab+bc+cd+da  =

 

ab + ad  + bc + dc  =

 

a(b + d) + c (b + d) =

 

(a + c) (b + d)

 

Note  that  the only possible values, no matter the arrangements,  are  

 

(9 + 11) (13 + 15)  = 360

(9 + 13) (11 + 15) = 572

(9+ 15) (13 + 11) = 576

 

To see this more clearly.....we are choosing any 2 of the 4 numbers to occupy the first set of parentheses without regard to order ....and this means that the second sum is "fixed"

 

So.....C(4,2)  = 6

 

But  we  can permute the order of the parentheses' sums in 2 ways.....so   6 / 2   =   3 different values

 

 

cool cool cool

CPhill  Nov 3, 2017
edited by CPhill  Nov 3, 2017
edited by CPhill  Nov 3, 2017

32 Online Users

avatar
avatar
avatar
avatar
avatar
avatar
avatar
avatar
avatar

New Privacy Policy

We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive information about your use of our website.
For more information: our cookie policy and privacy policy.