+0  
 
+3
401
4
avatar

There are 20 terms in an arithmetic sequence. The sum of the terms with odd numbers is equal to 220. The sum of the terms with the even numbers is equal to 250. Find the two middle terms of the sequence

Guest Jun 15, 2015

Best Answer 

 #1
avatar+91001 
+18

There are 20 terms in an arithmetic sequence. The sum of the terms with odd numbers is equal to 220. The sum of the terms with the even numbers is equal to 250. Find the two middle terms of the sequence

 

Mmm, the 2 middle terms are the 10th and the 11th.

I am going to split ths into 2 sequences.

odd terms

a,   a+2d,   a+4d,      ....    a+(n-1)*2d  ........  a+9*2d  

     

 sum=10/2(a+a+18d)=5(2a+18d)

 

$$\\5(2a+18d)=220\\
10(a+9d)=220\\
a+9d=22\qquad (1)\\$$

 

even terms

a+d,   a+3d,    a+5d,   .....    (a+d)+(n-1)*2d   ......   (a+d)+9*2d  

 

 sum=10/2(a+d+a+d+18d=5(2a+20d)

 

$$\\5(2a+20d)=250\\
10(a+10d)=250\\
a+10d=25\qquad (2)\\$$

 

(2) - (1)

d=3,    substitute     a= -5

 

----------------

 

check   the fist 20 terms should add up to 470

 

$$\\s_{n}=(n/2)[2a+(n-1)d \\\\
s_{20}= 10[-10+19*3] = 10[-10+57]=470 \qquad correct$$

 

-------------------

 

$$\\t_{10}=-5+9*3 = -5+27 = 22\\\\
t_{11}=22+3=25$$

 

The 2 middle terms are 22 and 25

Melody  Jun 15, 2015
Sort: 

4+0 Answers

 #1
avatar+91001 
+18
Best Answer

There are 20 terms in an arithmetic sequence. The sum of the terms with odd numbers is equal to 220. The sum of the terms with the even numbers is equal to 250. Find the two middle terms of the sequence

 

Mmm, the 2 middle terms are the 10th and the 11th.

I am going to split ths into 2 sequences.

odd terms

a,   a+2d,   a+4d,      ....    a+(n-1)*2d  ........  a+9*2d  

     

 sum=10/2(a+a+18d)=5(2a+18d)

 

$$\\5(2a+18d)=220\\
10(a+9d)=220\\
a+9d=22\qquad (1)\\$$

 

even terms

a+d,   a+3d,    a+5d,   .....    (a+d)+(n-1)*2d   ......   (a+d)+9*2d  

 

 sum=10/2(a+d+a+d+18d=5(2a+20d)

 

$$\\5(2a+20d)=250\\
10(a+10d)=250\\
a+10d=25\qquad (2)\\$$

 

(2) - (1)

d=3,    substitute     a= -5

 

----------------

 

check   the fist 20 terms should add up to 470

 

$$\\s_{n}=(n/2)[2a+(n-1)d \\\\
s_{20}= 10[-10+19*3] = 10[-10+57]=470 \qquad correct$$

 

-------------------

 

$$\\t_{10}=-5+9*3 = -5+27 = 22\\\\
t_{11}=22+3=25$$

 

The 2 middle terms are 22 and 25

Melody  Jun 15, 2015
 #2
avatar+78618 
0

Nice one, Melody......!!!    [ I always like to try to figure these out  ]

 

 

CPhill  Jun 15, 2015
 #3
avatar+91001 
0

Thanks Chris :)

Melody  Jun 15, 2015
 #4
avatar+18712 
+8

First solution: 

arithmetic sequence:  $$\small{\text{$
-5,~-2,~1,~4,~7,~10,~\dots ~,~22,~25,~\dots ~,~46,~49,~52
$}}$$

$$\small{\text{$\mathrm{with~} d=3,\quad t_1= -5 \qquad t_{10} = 22\quad t_{11}=25$}}$$

 

Second solution:

reverse arithmetic sequence:  $$\small{\text{$ 52,~49,~46,~43,~40,~37,~\dots ~,~25,~22,~\dots ~,~1,~-2,~-5 $}}$$

$$\small{\text{$\mathrm{with~} d=-3,\quad t_1= 52 \qquad t_{10} = 25\quad t_{11}=22$}}$$

 

heureka  Jun 16, 2015

8 Online Users

avatar
avatar
avatar
We use cookies to personalise content and ads, to provide social media features and to analyse our traffic. We also share information about your use of our site with our social media, advertising and analytics partners.  See details