There are integers b, c for which both roots of the polynomial x^2-x-1 are also roots of the polynomial x^5-bx-c. Determine the product bc.
Find the integer values of b and c so that the polynomial x2 - x - 1 and the polynomial x5 - bx - c have the same roots.
First: find the roots of x2 - x - 1 = 0
---> Using the quadratic formula, the roots are [ 1 + sqrt(5) ] / 2 and [ 1 + sqrt(5) ] / 2.
Placing these values into the equation x5 - bx - c = 0, we get:
x = [ 1 + sqrt(5) ] / 2 ---> ( [ 1 + sqrt(5) ] / 2 )5 - b( [ 1 + sqrt(5) ] / 2 ) - c = 0
---> [ 176 + 80sqrt(5) ] / 32 - ( [ 1 + sqrt(5) ] / 2 )b - c = 0
multiplying by 32 ---> 176 + 80sqrt(5) - 16b - 16sqrt(5)b - 32c = 0
Using the same steps for x = [ 1 - sqrt(5) ] / 2 , we get: 176 - 80sqrt(5) - 16b + 16sqrt(5)b - 32c = 0
Now, let's combine these two results: 176 + 80sqrt(5) - 16b - 16sqrt(5)b - 32c = 0
176 - 80sqrt(5) - 16b + 16sqrt(5)b - 32c = 0
Subtract the lower equation from the upper: 160sqrt(5) - 32sqrt(5)b = 0
---> 160sqrt(5) = 32sqrt(5)b ---> b = 5
Now, substitute this value for b into 176 + 80sqrt(5) - 16b - 16sqrt(5)b - 32c = 0
---> 176 + 80sqrt(5) - 16(5) - 16sqrt(5)(5) - 32c = 0
---> 176 + 80sqrt(5) - 80 - 80sqrt(5) - 32c = 0
---> 96 - 32c = 0
---> c = 3
Find the integer values of b and c so that the polynomial x2 - x - 1 and the polynomial x5 - bx - c have the same roots.
First: find the roots of x2 - x - 1 = 0
---> Using the quadratic formula, the roots are [ 1 + sqrt(5) ] / 2 and [ 1 + sqrt(5) ] / 2.
Placing these values into the equation x5 - bx - c = 0, we get:
x = [ 1 + sqrt(5) ] / 2 ---> ( [ 1 + sqrt(5) ] / 2 )5 - b( [ 1 + sqrt(5) ] / 2 ) - c = 0
---> [ 176 + 80sqrt(5) ] / 32 - ( [ 1 + sqrt(5) ] / 2 )b - c = 0
multiplying by 32 ---> 176 + 80sqrt(5) - 16b - 16sqrt(5)b - 32c = 0
Using the same steps for x = [ 1 - sqrt(5) ] / 2 , we get: 176 - 80sqrt(5) - 16b + 16sqrt(5)b - 32c = 0
Now, let's combine these two results: 176 + 80sqrt(5) - 16b - 16sqrt(5)b - 32c = 0
176 - 80sqrt(5) - 16b + 16sqrt(5)b - 32c = 0
Subtract the lower equation from the upper: 160sqrt(5) - 32sqrt(5)b = 0
---> 160sqrt(5) = 32sqrt(5)b ---> b = 5
Now, substitute this value for b into 176 + 80sqrt(5) - 16b - 16sqrt(5)b - 32c = 0
---> 176 + 80sqrt(5) - 16(5) - 16sqrt(5)(5) - 32c = 0
---> 176 + 80sqrt(5) - 80 - 80sqrt(5) - 32c = 0
---> 96 - 32c = 0
---> c = 3