We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive pseudonymised information about your use of our website. cookie policy and privacy policy.
 
+0  
 
0
139
5
avatar+55 

Find AC in the diagram to the nearest integer.

 

 

\(In $\triangle PQR,$ we have $\angle P = 90^\circ,$ $PQ=3,$ and $QR=\sqrt {58}.$ Find $\tan R.$ \)

 

\(Find the value of $\sin 40^\circ \cdot \cos 50^\circ + \cos 40^\circ \cdot \sin 50^\circ.$\)(Says: "Find the value of...")

 

In the diagram below, we know \(\tan \theta = \frac{3}{4}. \) Find the area of the triangle.

 



 

 May 30, 2019
 #1
avatar+55 
+1

Nvm, the last one I got it. It is 720

 May 30, 2019
 #2
avatar+8756 
+3

Find AC in the diagram to the nearest integer.

 

sin( angle )  =  opposite / hypotenuse

 

sin( 70° )  =  31 / AC

                                         Multiply both sides of the equation by  AC

AC sin( 70° )  =  31

                                         Divide both sides of the equation by  sin( 70° )

AC  =  31 / sin( 70° )

                                         Plug    31 / sin( 70° )    into a calculator.

AC  ≈  33

 May 30, 2019
 #3
avatar+8756 
+3

In \(\triangle PQR,\) we have \(\angle P = 90^\circ,\) \(PQ=3,\) and \(QR=\sqrt {58}.\) Find \(\tan R.\)

 

 

By the Pythagorean theorem,

32 + ( PR )2  =  √[ 58 ]2

9  +  ( PR )2  =  58

( PR )2  =  49

PR  =  7

 

tan( angle )  =  opposite / adjacent

tan( R )  =  3 / PR

tan( R )  =  3 / 7

 May 30, 2019
 #4
avatar+8756 
+3

Find the value of   \(\sin40°\cdot\cos50°+\cos40°\cdot\sin50°\) .

 

Remember the angle addition formula for sine:    \(\sin(\alpha+\beta)\ =\ \sin\alpha\cos\beta+\cos\alpha\sin\beta\)

So...

 

\(\sin40°\cdot\cos50°+\cos40°\cdot\sin50°\ =\ \sin(40°+50°)\ =\ \sin(90°)\ =\ 1\)

_ _ _ _ _

 May 30, 2019
 #5
avatar+8756 
+3

Part of this last problem is just like the second problem.......

 

In the diagram below, we know  \(\tan\theta=\frac34\) . Find the area of the triangle.

 

Let the base of the triangle be the side with length 60. Draw a height to that base and call it  h .

 

 

By the Pythagorean Identity,

1+ cot2θ  =  csc2θ

 

 

1 + ( 4/3 )2  =  1 / sin2θ

 

25 / 9  =  1 / sin2θ

 

 

9 / 25  =  sin2θ

 

sin θ  =  3 / 5

 

 

 

sin( angle )  =  opposite / hypotenuse 
sin θ  =  h / 40

 

 

3 / 5  =  h / 40

 

24  =  h

 

 

 

area of triangle  =  (1/2)(base)(height) 

area of triangle  =  (1/2)(60)(24)

 

 

area of triangle  =  720

 

 May 30, 2019

31 Online Users

avatar