+0  
 
0
265
1
avatar

can there be a third dimension in Mathematics? 1 is real, 2 is imaginary and 3..?

Guest Jul 15, 2015

Best Answer 

 #1
avatar+18715 
+5

can there be a third dimension in Mathematics? 1 is real, 2 is imaginary and 3..?

see quaternion: https://en.wikipedia.org/wiki/Quaternion

 

 

Quaternion multiplication
×1ijk
11ijk
ii−1kj
jjk−1i
kkji−1

In mathematics, the quaternions are a number system that extends the complex numbers. They were first described by Irish mathematician William Rowan Hamilton in 1843[1][2] and applied to mechanics in three-dimensional space. A feature of quaternions is that multiplication of two quaternions is noncommutative. Hamilton defined a quaternion as the quotient of two directed lines in a three-dimensional space[3] or equivalently as the quotient of two vectors.[4]

Quaternions find uses in both theoretical and applied mathematics, in particular for calculations involving three-dimensional rotations such as in three-dimensional computer graphics, computer vision and crystallographic texture analysis.[5] In practical applications, they can be used alongside other methods, such as Euler angles and rotation matrices, or as an alternative to them, depending on the application.

In modern mathematical language, quaternions form a four-dimensional associative normed division algebra over the real numbers, and therefore also a domain. In fact, the quaternions were the first noncommutative division algebra to be discovered. The algebra of quaternions is often denoted by H (for Hamilton), or in blackboard bold by \mathbb H (Unicode U+210D, ). It can also be given by the Clifford algebra classifications C0,2(R) ≅ C03,0(R). The algebra H holds a special place in analysis since, according to the Frobenius theorem, it is one of only two finite-dimensional division rings containing the real numbers as a proper subring, the other being the complex numbers. These rings are also Euclidean Hurwitz algebras, of which quaternions are the largest associative algebra.

 

heureka  Jul 15, 2015
Sort: 

1+0 Answers

 #1
avatar+18715 
+5
Best Answer

can there be a third dimension in Mathematics? 1 is real, 2 is imaginary and 3..?

see quaternion: https://en.wikipedia.org/wiki/Quaternion

 

 

Quaternion multiplication
×1ijk
11ijk
ii−1kj
jjk−1i
kkji−1

In mathematics, the quaternions are a number system that extends the complex numbers. They were first described by Irish mathematician William Rowan Hamilton in 1843[1][2] and applied to mechanics in three-dimensional space. A feature of quaternions is that multiplication of two quaternions is noncommutative. Hamilton defined a quaternion as the quotient of two directed lines in a three-dimensional space[3] or equivalently as the quotient of two vectors.[4]

Quaternions find uses in both theoretical and applied mathematics, in particular for calculations involving three-dimensional rotations such as in three-dimensional computer graphics, computer vision and crystallographic texture analysis.[5] In practical applications, they can be used alongside other methods, such as Euler angles and rotation matrices, or as an alternative to them, depending on the application.

In modern mathematical language, quaternions form a four-dimensional associative normed division algebra over the real numbers, and therefore also a domain. In fact, the quaternions were the first noncommutative division algebra to be discovered. The algebra of quaternions is often denoted by H (for Hamilton), or in blackboard bold by \mathbb H (Unicode U+210D, ). It can also be given by the Clifford algebra classifications C0,2(R) ≅ C03,0(R). The algebra H holds a special place in analysis since, according to the Frobenius theorem, it is one of only two finite-dimensional division rings containing the real numbers as a proper subring, the other being the complex numbers. These rings are also Euclidean Hurwitz algebras, of which quaternions are the largest associative algebra.

 

heureka  Jul 15, 2015

13 Online Users

avatar
We use cookies to personalise content and ads, to provide social media features and to analyse our traffic. We also share information about your use of our site with our social media, advertising and analytics partners.  See details