+0  
 
+1
94
3
avatar+36 

Line AB, CB, and DA are the same lengths. Angles 1 and 2 are the same.The angle of A is 120o . The area of polygon ABCD is 60. What is the area of the triangle ABD?

yomyhomies  Mar 13, 2017

Best Answer 

 #1
avatar+18356 
+15

Line AB, CB, and DA are the same lengths. Angles 1 and 2 are the same.The angle of A is 120o .

The area of polygon ABCD is 60.

What is the area of the triangle ABD?

 

Let angles 1 and 2 are \(\varphi\)

Let AB, CB, and DA = a

 

1. \(DB =\ ?\)

\(\begin{array}{|rcll|} \hline DB^2 &=& a^2+a^2-2\cdot a\cdot a\cdot \cos(120^{\circ}) \\ DB^2 &=& 2a^2[~1-\cos(120^{\circ}) ~] \quad & | \quad \cos(120^{\circ}) = \cos(180^{\circ}-60^{\circ}) = -\cos(60^{\circ}) \\ DB^2 &=& 2a^2[~1+\cos(60^{\circ}) ~] \quad & | \quad \cos(60^{\circ}) = \frac12 \\ DB^2 &=& 2a^2(~1+\frac12 ~) \\ DB^2 &=& 2a^2(~\frac32 ~) \\ DB^2 &=& 3a^2 \\ \mathbf{DB} & \mathbf{=} & \mathbf{a\cdot \sqrt{3}} \\ \hline \end{array}\)

 

2. \(\varphi =\ ?\)

\(\begin{array}{|rcll|} \hline \frac{ \sin(\varphi) } {a} &=& \frac{\sin(120^{\circ})} {DB} \\ \frac{ \sin(\varphi) } {a} &=& \frac{\sin(120^{\circ})} {a\cdot \sqrt{3}} \\ \sin(\varphi) &=& \frac{\sin(120^{\circ})} {\sqrt{3}} \quad & | \quad \sin(120^{\circ}) = \sin(180^{\circ}-60^{\circ}) = \sin(60^{\circ}) \\ \sin(\varphi) &=& \frac{\sin(60^{\circ})} {\sqrt{3}} \quad & | \quad \sin(60^{\circ}) = \frac{\sqrt{3}} {2} \\ \sin(\varphi) &=& \frac{\frac{\sqrt{3}} {2} } {\sqrt{3}} \\ \sin(\varphi) &=& \frac12\\ \mathbf{\varphi} & \mathbf{=} & \mathbf{30^{\circ}} \\ \hline \end{array} \)

 

3. Angle \(C =\ ?\)

\(\begin{array}{|rcll|} \hline \frac{ \sin(C) } {DB} &=& \frac{ \sin{30^{\circ}} } {a} \quad & | \quad \sin(30^{\circ}) = \frac12 \\ \frac{ \sin(C) } {a\cdot \sqrt{3}} &=& \frac{ \frac12 } {a} \\ \sin(C) &=& \frac{ \sqrt{3} } {2} \\ \mathbf{C} & \mathbf{=} & \mathbf{60^{\circ}} \\ \hline \end{array}\)

 

So angle CBD is \(90^{\circ}\) and triangle CBD is a right angular triangle.

 

4. The area of triangle CBD:

\(\begin{array}{|rcll|} \hline A_{CBD} &=& \frac{ a\cdot DB }{2} \\ &=& \frac{ a\cdot a\cdot \sqrt{3} }{2} \\ \mathbf{A_{CBD}} & \mathbf{=} & \mathbf{\frac{ a^2\sqrt{3} }{2}} \\ \hline \end{array} \)

 

5. The area of triangle ABD:

\(\begin{array}{|rcll|} \hline A_{ABD} &=& \frac{ DB \cdot a \cdot \sin(\varphi) }{2} \\ &=& \frac{ a\cdot \sqrt{3} \cdot a \cdot \frac12 }{2} \\ A_{ABD} &=& \frac{ a^2\cdot \sqrt{3} }{4} \\ \text{or}\\ a^2 &=& \frac{4\cdot A_{ABD} } {\sqrt{3}} \\ \mathbf{a^2} & \mathbf{=} & \mathbf{\frac{4\cdot A_{ABD} } {\sqrt{3}}} \\ \hline \end{array} \)

 

The area of polygon ABCD \(A_{ABCD} = 60\)

\(\begin{array}{|rcll|} \hline A_{ABCD} &=& A_{ABD} + A_{CBD} \quad & | \quad A_{CBD} = \frac{ a^2\sqrt{3} }{2} \qquad A_{ABCD} = 60 \\ 60 &=& A_{ABD} + \frac{ a^2\sqrt{3} }{2} \quad & | \quad a^2 = \frac{4\cdot A_{ABD} } {\sqrt{3}} \\ 60 &=& A_{ABD} + \frac{ \frac{4\cdot A_{ABD} } {\sqrt{3}}\sqrt{3} }{2} \\ 60 &=& A_{ABD} + 2\cdot A_{ABD} \\ 60 &=& 3\cdot A_{ABD} \\ 20 &=& A_{ABD} \\ \mathbf{A_{ABD}} & \mathbf{=} & \mathbf{20} \\ \hline \end{array}\)

 

The area of the triangle ABD is 20

 

laugh

heureka  Mar 13, 2017
Sort: 

3+0 Answers

 #1
avatar+18356 
+15
Best Answer

Line AB, CB, and DA are the same lengths. Angles 1 and 2 are the same.The angle of A is 120o .

The area of polygon ABCD is 60.

What is the area of the triangle ABD?

 

Let angles 1 and 2 are \(\varphi\)

Let AB, CB, and DA = a

 

1. \(DB =\ ?\)

\(\begin{array}{|rcll|} \hline DB^2 &=& a^2+a^2-2\cdot a\cdot a\cdot \cos(120^{\circ}) \\ DB^2 &=& 2a^2[~1-\cos(120^{\circ}) ~] \quad & | \quad \cos(120^{\circ}) = \cos(180^{\circ}-60^{\circ}) = -\cos(60^{\circ}) \\ DB^2 &=& 2a^2[~1+\cos(60^{\circ}) ~] \quad & | \quad \cos(60^{\circ}) = \frac12 \\ DB^2 &=& 2a^2(~1+\frac12 ~) \\ DB^2 &=& 2a^2(~\frac32 ~) \\ DB^2 &=& 3a^2 \\ \mathbf{DB} & \mathbf{=} & \mathbf{a\cdot \sqrt{3}} \\ \hline \end{array}\)

 

2. \(\varphi =\ ?\)

\(\begin{array}{|rcll|} \hline \frac{ \sin(\varphi) } {a} &=& \frac{\sin(120^{\circ})} {DB} \\ \frac{ \sin(\varphi) } {a} &=& \frac{\sin(120^{\circ})} {a\cdot \sqrt{3}} \\ \sin(\varphi) &=& \frac{\sin(120^{\circ})} {\sqrt{3}} \quad & | \quad \sin(120^{\circ}) = \sin(180^{\circ}-60^{\circ}) = \sin(60^{\circ}) \\ \sin(\varphi) &=& \frac{\sin(60^{\circ})} {\sqrt{3}} \quad & | \quad \sin(60^{\circ}) = \frac{\sqrt{3}} {2} \\ \sin(\varphi) &=& \frac{\frac{\sqrt{3}} {2} } {\sqrt{3}} \\ \sin(\varphi) &=& \frac12\\ \mathbf{\varphi} & \mathbf{=} & \mathbf{30^{\circ}} \\ \hline \end{array} \)

 

3. Angle \(C =\ ?\)

\(\begin{array}{|rcll|} \hline \frac{ \sin(C) } {DB} &=& \frac{ \sin{30^{\circ}} } {a} \quad & | \quad \sin(30^{\circ}) = \frac12 \\ \frac{ \sin(C) } {a\cdot \sqrt{3}} &=& \frac{ \frac12 } {a} \\ \sin(C) &=& \frac{ \sqrt{3} } {2} \\ \mathbf{C} & \mathbf{=} & \mathbf{60^{\circ}} \\ \hline \end{array}\)

 

So angle CBD is \(90^{\circ}\) and triangle CBD is a right angular triangle.

 

4. The area of triangle CBD:

\(\begin{array}{|rcll|} \hline A_{CBD} &=& \frac{ a\cdot DB }{2} \\ &=& \frac{ a\cdot a\cdot \sqrt{3} }{2} \\ \mathbf{A_{CBD}} & \mathbf{=} & \mathbf{\frac{ a^2\sqrt{3} }{2}} \\ \hline \end{array} \)

 

5. The area of triangle ABD:

\(\begin{array}{|rcll|} \hline A_{ABD} &=& \frac{ DB \cdot a \cdot \sin(\varphi) }{2} \\ &=& \frac{ a\cdot \sqrt{3} \cdot a \cdot \frac12 }{2} \\ A_{ABD} &=& \frac{ a^2\cdot \sqrt{3} }{4} \\ \text{or}\\ a^2 &=& \frac{4\cdot A_{ABD} } {\sqrt{3}} \\ \mathbf{a^2} & \mathbf{=} & \mathbf{\frac{4\cdot A_{ABD} } {\sqrt{3}}} \\ \hline \end{array} \)

 

The area of polygon ABCD \(A_{ABCD} = 60\)

\(\begin{array}{|rcll|} \hline A_{ABCD} &=& A_{ABD} + A_{CBD} \quad & | \quad A_{CBD} = \frac{ a^2\sqrt{3} }{2} \qquad A_{ABCD} = 60 \\ 60 &=& A_{ABD} + \frac{ a^2\sqrt{3} }{2} \quad & | \quad a^2 = \frac{4\cdot A_{ABD} } {\sqrt{3}} \\ 60 &=& A_{ABD} + \frac{ \frac{4\cdot A_{ABD} } {\sqrt{3}}\sqrt{3} }{2} \\ 60 &=& A_{ABD} + 2\cdot A_{ABD} \\ 60 &=& 3\cdot A_{ABD} \\ 20 &=& A_{ABD} \\ \mathbf{A_{ABD}} & \mathbf{=} & \mathbf{20} \\ \hline \end{array}\)

 

The area of the triangle ABD is 20

 

laugh

heureka  Mar 13, 2017
 #2
avatar+89752 
+5


\(Area ABCD \\ = 2*ABD + BCE\\ = 2*(0.5x^2sin120) + 0.5x^2sin60\\ =2*(0.5 x^2sin60) + (0.5x^2sin60)\\ =3*(0.5 x^2sin60) \\ =3* area\;of\;\triangle ABD\\~\\ 60=3* area\;of\;\triangle ABD\\ Area\;of\;\triangle ABD=20\;\;u^2 \)

Melody  Mar 13, 2017
 #3
avatar+75302 
+5

Like the way you did that one, Melody....!!!!

 

 

cool cool cool

CPhill  Mar 13, 2017

12 Online Users

avatar
We use cookies to personalise content and ads, to provide social media features and to analyse our traffic. We also share information about your use of our site with our social media, advertising and analytics partners.  See details