+0  
 
0
69
1
avatar+117 

This rectangular prism is intersected by a plane that contains points D, E, K, and L.

 

What is the perimeter of the cross section?

Enter your answer in the box. Round only your final answer to the nearest tenth.

 

oscar.a1551  May 24, 2018

Best Answer 

 #1
avatar+7063 
+1

The perimeter of the cross section is the perimeter of rectangle DEKL.

 

perimeter of DEKL  =  DE + EK + KL + LD

 

(where  DE ,  EK ,  KL , and  LD  are in meters)

 

KL  =  12     and     DE  =  12

 

To find the length of EK, look at right triangle EJK.

 

By the Pythagorean theorem,

 

EJ2  +  JK2   =   EK2

                                       Plug in  5  for  EJ  and  4  for  JK .

 52   +   42   =    EK2
                                       Simplify the left side of the equation.

25  +  16   =   EK2

 

41   =   EK2

                                       Take the positive square root of both sides.

√41  =  EK

 

So.....

 

EK  =  √41     and     LD  =  √41

 

perimeter of DEKL  =  DE + EK + KL + LD

                                                                       Plug in the values of  DE ,  EK ,  KL , and  LD .

perimeter of DEKL  =  12 + √41 + 12 + √41

                                                                       Combine like terms.

perimeter of DEKL  =  24 + 2√41

hectictar  May 24, 2018
 #1
avatar+7063 
+1
Best Answer

The perimeter of the cross section is the perimeter of rectangle DEKL.

 

perimeter of DEKL  =  DE + EK + KL + LD

 

(where  DE ,  EK ,  KL , and  LD  are in meters)

 

KL  =  12     and     DE  =  12

 

To find the length of EK, look at right triangle EJK.

 

By the Pythagorean theorem,

 

EJ2  +  JK2   =   EK2

                                       Plug in  5  for  EJ  and  4  for  JK .

 52   +   42   =    EK2
                                       Simplify the left side of the equation.

25  +  16   =   EK2

 

41   =   EK2

                                       Take the positive square root of both sides.

√41  =  EK

 

So.....

 

EK  =  √41     and     LD  =  √41

 

perimeter of DEKL  =  DE + EK + KL + LD

                                                                       Plug in the values of  DE ,  EK ,  KL , and  LD .

perimeter of DEKL  =  12 + √41 + 12 + √41

                                                                       Combine like terms.

perimeter of DEKL  =  24 + 2√41

hectictar  May 24, 2018

13 Online Users

avatar

New Privacy Policy

We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive information about your use of our website.
For more information: our cookie policy and privacy policy.