+0  
 
+1
259
4
avatar+113 

Three concentric circles are drawn such that the area of the smallest circle is equal to the area of each of the rings. If the radius of the largest circle is 12 cm, what is the radius of the smallest circle?

jonathanxu999  Feb 2, 2018

Best Answer 

 #2
avatar+7339 
+3

*edit again* I just thought of this....

 

area of small circle  +  area of middle ring + area of outer ring   =   area of big circle

 

area of small circle + area of small circle + area of outer ring   =   area of big circle

 

area of small circle + area of small circle + area of small circle   =   area of big circle

 

3(area of small circle)   =   area of big circle

 

3π r2  =  π * 122      ,  where  r  is the radius of the small circle.

 

3π r2  =  144π

                               Divide both sides by  3π .

r2  =  48

                               Take the positive square root of both sides.

r  =  4√3

hectictar  Feb 2, 2018
edited by hectictar  Feb 2, 2018
edited by hectictar  Feb 2, 2018
edited by hectictar  Feb 2, 2018
 #2
avatar+7339 
+3
Best Answer

*edit again* I just thought of this....

 

area of small circle  +  area of middle ring + area of outer ring   =   area of big circle

 

area of small circle + area of small circle + area of outer ring   =   area of big circle

 

area of small circle + area of small circle + area of small circle   =   area of big circle

 

3(area of small circle)   =   area of big circle

 

3π r2  =  π * 122      ,  where  r  is the radius of the small circle.

 

3π r2  =  144π

                               Divide both sides by  3π .

r2  =  48

                               Take the positive square root of both sides.

r  =  4√3

hectictar  Feb 2, 2018
edited by hectictar  Feb 2, 2018
edited by hectictar  Feb 2, 2018
edited by hectictar  Feb 2, 2018
 #3
avatar+92565 
+1

Mmmm....that problem seems familiar!!!!  [inside joke ]

 

Good job, hectictar  !!!

 

 

cool cool cool

CPhill  Feb 2, 2018
 #4
avatar+20598 
+3

Three concentric circles are drawn such that the area of the smallest circle is equal to the area of each of the rings.
If the radius of the largest circle is 12 cm,
what is the radius of the smallest circle?

 

\(\begin{array}{rcll} \text{Let smallest circle radius $=r_s$ } \\ \text{Let middle circle radius $=r_m$ }\\ \text{Let largest circle radius $=r_l$ }\\ \end{array} \)

 

\(\begin{array}{|lrcll|} \hline & \pi r_s^2 = \pi r_m^2-\pi r_s^2 = \pi r_l^2 - \pi r_m^2 \quad & | \quad : \pi \\ & r_s^2 = r_m^2- r_s^2 = r_l^2- r_m^2 \\ \hline \end{array} \)

 

\(\begin{array}{lrcll} (1) & 2r_s^2 &=& r_m^2 \\ \hline (2) & 2r_m^2 &=& r_l^2 + r_s^2 \quad & | \quad r_m^2 = 2r_s^2 \\ & 2\cdot (2r_s^2) &=& r_l^2 + r_s^2 \\ & 4r_s^2 &=& r_l^2 + r_s^2 \\ & 3r_s^2 &=& r_l^2 \quad & | \quad \sqrt{ }\\ & \sqrt{3}r_s &=& r_l \quad & | \quad r_l = 12 \\ & \sqrt{3}r_s &=& 12 \\ & r_s &=& \dfrac{12}{\sqrt{3}} \\ & r_s &=& \dfrac{12 \sqrt{3}}{\sqrt{3}\sqrt{3}} \\ & r_s &=& \dfrac{12 \sqrt{3}}{3} \\ & \mathbf{r_s} &\mathbf{=}& \mathbf{4 \sqrt{3} } \\ \end{array}\)

 

\(\text{The radius of the smallest circle is $\mathbf{4 \sqrt{3} }$ cm $\approx \mathbf{6.9} $ cm } \)

 

 

laugh

heureka  Feb 2, 2018
edited by heureka  Feb 2, 2018

27 Online Users

avatar
avatar
avatar
avatar

New Privacy Policy

We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive information about your use of our website.
For more information: our cookie policy and privacy policy.