+0  
 
+5
502
1
avatar+1068 

Three identical circles of radius 30 cm are tangent to each other externally. A fourth circle of the same radius was drawn so that its center is coincidence with the center of the space bounded by the three tangent circles. Find the area of the region inside the fourth circle but outside the first three circles. It is the shaded region shown in the figure below. 

 

011-three-tangent-circles.gif

civonamzuk  May 19, 2015

Best Answer 

 #1
avatar
+10

This one was a bit tricky, but I think it's because I made it more complicated than it needed to be.

The most important first step was to determine the center of our fourth circle. How far away is it from the centers of the other three circles?

I set the center of the bottom left circle as my "origin." Then, creating a triangle between the three centers, I solved for the centroid of the triangle (which had an effective coordinate of (30,17.32)). This means that the distance between the fourth circle and the other three circles was 34.64 cm.

Now, knowing this, I generated an independent problem: what is overlapping area of two circles 34.64 cm apart, with radii of 30 cm? Once I had this number, it was simply a matter of multiplying it by three and subtracting from the overall area of one circle.

You probably don't want to see my math...I used an integral in the cartesian coordinate system. I basically found the midpoint of their intersecting area and set it as my lower limit (17.32), set 30 as my upper limit, and integrated sqrt(30^2-x^2)dx. Then I multiplied that area by 4, since integrating circles in cartesian coordinates is wierd. It was messy, but the answer: the overlapping area was 871.08 cm^2.

Since the area of the fourth circle is pi*r^2 (or 2827.43 cm^2), you simply subtract 871.08*3 (or 2613.24 cm^2, which is the area of intersection between the fourth circle and each of the other three circles).

This yields the final answer of 214.22 cm^2...give or take for rounding error. ;)

-KMM

Guest May 19, 2015
Sort: 

1+0 Answers

 #1
avatar
+10
Best Answer

This one was a bit tricky, but I think it's because I made it more complicated than it needed to be.

The most important first step was to determine the center of our fourth circle. How far away is it from the centers of the other three circles?

I set the center of the bottom left circle as my "origin." Then, creating a triangle between the three centers, I solved for the centroid of the triangle (which had an effective coordinate of (30,17.32)). This means that the distance between the fourth circle and the other three circles was 34.64 cm.

Now, knowing this, I generated an independent problem: what is overlapping area of two circles 34.64 cm apart, with radii of 30 cm? Once I had this number, it was simply a matter of multiplying it by three and subtracting from the overall area of one circle.

You probably don't want to see my math...I used an integral in the cartesian coordinate system. I basically found the midpoint of their intersecting area and set it as my lower limit (17.32), set 30 as my upper limit, and integrated sqrt(30^2-x^2)dx. Then I multiplied that area by 4, since integrating circles in cartesian coordinates is wierd. It was messy, but the answer: the overlapping area was 871.08 cm^2.

Since the area of the fourth circle is pi*r^2 (or 2827.43 cm^2), you simply subtract 871.08*3 (or 2613.24 cm^2, which is the area of intersection between the fourth circle and each of the other three circles).

This yields the final answer of 214.22 cm^2...give or take for rounding error. ;)

-KMM

Guest May 19, 2015

13 Online Users

avatar
We use cookies to personalise content and ads, to provide social media features and to analyse our traffic. We also share information about your use of our site with our social media, advertising and analytics partners.  See details