We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive pseudonymised information about your use of our website. cookie policy and privacy policy.
 
+0  
 
+5
1277
5
avatar+297 

Three real numbers x, y, z are such that x2 + 6y = 􀀀17, y2 + 4z = 1 and z2 + 2x = 2. What
is the value of x2 + y2 + z2?9:01 PM

solve this if you can

x2 =x^2 same for others

 Sep 22, 2015

Best Answer 

 #1
avatar+103059 
+6

x^2 + 6y = 17   

y^2 + 4z = 1    

z^2 + 2x = 2  

 

WolframAlpha shows a couple of real solutions.......

 

 

I leave the rest for you..........

 

 

cool cool cool

 Sep 22, 2015
edited by CPhill  Sep 22, 2015
 #1
avatar+103059 
+6
Best Answer

x^2 + 6y = 17   

y^2 + 4z = 1    

z^2 + 2x = 2  

 

WolframAlpha shows a couple of real solutions.......

 

 

I leave the rest for you..........

 

 

cool cool cool

CPhill Sep 22, 2015
edited by CPhill  Sep 22, 2015
 #2
avatar+103059 
+5

Here's the worked out solution.........

 

x^2 + 6y = 17    →     y = [17 - x^2] / 6 

y^2 + 4z = 1    →       z = [ 1  - y^2 ] / 4 →   z =  [ 1 -  [(17 - x^2)/6]^2]^2/4

z^2 + 2x = 2  →        [ 1 - (1 - [(17 - x^2)/6]^2)]^2 + 2x  = 2       (3)

 

Using  (3).....we have

 

  [ 1 -  [(17 - x^2)/6]^2)]^2 / 4 + 2x  = 2

 

[ 1 - [ 289 - 34x^2 + x^4]/ 36]^2 /16  + 2x = 2   simplify

 

[(1/36) (-x^4 + 34x^2 - 289) + 1]^2 / 16  + 2x = 2

 

[ 1 / 20736] [ (-x^4 + 34x^2 - 289) + 36]^2 + 2x = 2

 

[ -x^4 + 34x^2 - 253]^2 / 20736  + 2x  = 2

 

[x^8 -68x^6 +1662x^4-17204x^2 + 64009] / 20736  + 2x  = 2

 

[x^8 -68x^6 +1662x^4-17204x^2 + 41472x +  64009]  / 20736   = 2

 

 

[x^8 -68x^6 +1662x^4-17204x^2 + 41472x +  64009]  = 41472

 

x^8 -68x^6 + 1662x^4 - 17204x^2 + 41472x + 64009 - 41472 = 0

 

x^8 -68x^6 + 1662x^4 - 17204x^2 + 41472x + 22537 = 0

 

Kes, this will be too difficult to solve algebraically........we can either find the real solutions by a graph or by using a solver........WolframAlpha gives the real solutions of :

 

x ≈ -6.42773      and     x = -0.458115

 

So  x^2   = either ≈  41.3157129529    or   ≈  0.209869353225

 

And     x^2 +  6y  = 17   ....so........

 

41.3157129529 + 6y = 17   →  y ≈ -4.0526   → y^2 ≈  16.42356676     .......or......

0.209869353225 + 6y = 17  →  y ≈ 2.798   → y^2 ≈  7.829

 

 

And y^2 + 4z = 1    →   16.42356676 + 4z = 1  → z  ≈ 3.856 → z^2  ≈ 14.869    .....or......

 7.829 + 4z  = 1  →  z ≈ -1.707     →  z^2 ≈  2.914

 

So...in one case   x^2 + y^2 + z^2  =    41.3157129529 +   16.42356676  +  14.869  = 72.6082797129

 

OR

 

x^2 + y^2 + z^2  =    0.209869353225 + 7.829  + 2.914  = 10.952869353225

 

 

cool cool cool

 Sep 23, 2015
 #3
avatar
0

x2+6y=-17  .....................             (1)

y2+4z=1     .....................             (2)

z2+2x=2     ......................            (3)

now add 1,2&3

we get x2+6y+y2+4z+z2+2x=-17+1+2

                                          =-14

we can rewrite the equation as (x+1)^2+(y+3)^2+(z+2)^2=-14+1+4+9

                                                                                       =0

we did the above step by adding (1^2=1)+(2^2=4)+(3^2=9) on both side of the equation and factorizing the LHS.

so the equation becomes (x+1)^2+(y+3)^2+(z+2)^2=0

therefore to get 0 each of the three squares should be equal to 0

(x+1)^2=0              x=-1

(y+3)^2=0              y=-3

(z+2)^2=0              z=-2

so the value of x2+y2+z2=(-1)^2+(-3)^2+(-2)^2

                                      =1+4+9=14

ans-14

 May 7, 2016
 #4
avatar
0

Guest # 3

Did you check your "solutions" by substituting to see if they balance? Well, they don't!!.

 May 7, 2016
 #5
avatar
0

x2+6y=-17  .....................             (1)

y2+4z=1     .....................             (2)

z2+2x=2     ......................            (3)

now add 1,2&3

we get x2+6y+y2+4z+z2+2x=-17+1+2

                                          =-14

adding 1,4,9 on LHS and RHS

i.e.

 

x^2 +6y+y^2+4z+z^2+2x++9+4+1= -14+1+9+4

therefore

 

(x^2+2x+1)+(y^2+6y+9)+(z^2+4z+4)=0

(x+1)^2+(y+3)^2+(z+2)^2=0

 

we did the above step by adding (1^2=1)+(2^2=4)+(3^2=9) on both side of the equation and factorizing the LHS.

so the equation becomes (x+1)^2+(y+3)^2+(z+2)^2=0

therefore to get 0 each of the three squares should be equal to 0

(x+1)^2=0              x=-1

(y+3)^2=0              y=-3

(z+2)^2=0              z=-2

so the value of x2+y2+z2=(-1)^2+(-3)^2+(-2)^2

                                      =1+4+9=14

ans-14

 

 

#guest4

 

yes i have checked the solution by using substituition method.       and if still you are not satisfied by my solution then plz be clear with your question so that even i can be more clear in my explaination..!!!

 May 7, 2016

28 Online Users

avatar
avatar
avatar
avatar
avatar