+0  
 
0
40
3
avatar+460 

What is the radius of the circle inscribed in triangle ABC if AB = 10, AC = 17, BC = 21? Express your answer as a decimal to the nearest tenth.

shreyas1  Oct 7, 2018
 #1
avatar+89874 
+1

We can find the area of this triangle using Heron's Formula

 

s  = [ 10 + 17 + 21  ] / 2  =  48 / 2  = 24

 

The area  =  √ [ s (s - 10) (s - 17) (s - 21) ]  =  

 

√ [ 24 (14) (7) (3) ] =

 

√7056   = 84  units^2

 

The area   =  1/2  [ sum of triangle's sides ]  *  altitude of each triangle

 

But....the altitude of each triangle  = the radius  of the incircle

 

So...we have

 

84  = (1/2) (48) * radius of incircle

 

84  = 24 * radius of incircle

 

84 / 24  = rasius of incircle  = 3.5 units

 

EDIT TO CORRECT AN ERROR  !!!!

 

 

 

cool cool cool

CPhill  Oct 7, 2018
edited by CPhill  Oct 8, 2018
 #2
avatar
+1

CPhill: There is a minor typo in Heron's formula calculation:
sqrt(24 (24 - 21) (24 - 17) (24 - 10))
Sqrt[24 x 3 x 7 x 14]
Sqrt[7,056] =84 - the area of the triangle.

Guest Oct 7, 2018
 #3
avatar+460 
0

Thank you guest and CPhill

shreyas1  Oct 8, 2018

27 Online Users

avatar
avatar

New Privacy Policy

We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive information about your use of our website.
For more information: our cookie policy and privacy policy.