We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive pseudonymised information about your use of our website. cookie policy and privacy policy.
 
+0  
 
0
79
1
avatar+160 

 

.

 Feb 24, 2019
 #1
avatar+22182 
+1

The ratio between the areas of equilateral triangles \(\triangle\) BXY and \(\triangle\) BAC is 1 : 4.
If \(AC=6\), what is XY?

 

 

\(\text{Let triangle $ BXY = A_2= \dfrac{XY\cdot h_2}{2} $} \\ \text{Let triangle $ BAC = A = \dfrac{6\cdot h }{2} $} \)

 

\(\begin{array}{|rcll|} \hline \dfrac{A_2}{A} &=& \dfrac{1}{4} \quad | \quad A_2 = \dfrac{XY\cdot h_2}{2},\ A = \dfrac{6\cdot h }{2} \\\\ \dfrac{\dfrac{XY\cdot h_2}{2}}{\dfrac{6\cdot h }{2}} &=& \dfrac{1}{4} \\\\ \dfrac{XY\cdot h_2} {6\cdot h } &=& \dfrac{1}{4} \\\\ XY \cdot \dfrac{h_2} {h} &=& \dfrac{6}{4} \\\\ XY \cdot \dfrac{h_2} {h} &=& \dfrac{3}{2} \quad | \quad \dfrac{h_2}{h} = \dfrac{XY}{6} \\\\ XY \cdot \dfrac{XY}{6} &=& \dfrac{3}{2} \\\\ XY^2 &=& 3^2 \\\\ \mathbf{XY} & \mathbf{=} & \mathbf{3} \\ \hline \end{array}\)

 

 

laugh

 Feb 25, 2019

16 Online Users

avatar