An isosceles triangle has a height of 12 cm and an area of 28 square cm. How many cm's are in the perimeter of the triangle? Express your answer in simplest radical form.
\(A = \frac{bh}{2} = \frac{12b}{2} = 28 \quad \rightarrow \quad b = \frac{14}{3}\)
\(P = b + 2\sqrt{b^2 + h^2} = \frac{14}{3} + 2\sqrt{(\frac{14}{3})^2 + 12^2}\)
.\(A = \frac{bh}{2} = \frac{12b}{2} = 28 \quad \rightarrow \quad b = \frac{14}{3}\)
\(P = b + 2\sqrt{b^2 + h^2} = \frac{14}{3} + 2\sqrt{(\frac{14}{3})^2 + 12^2}\)