We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive pseudonymised information about your use of our website. cookie policy and privacy policy.
 
+0  
 
0
713
1
avatar

Triangle's sides are a=5 b=12 and c=9. What is the area of the triangle?

 Jul 25, 2014

Best Answer 

 #1
avatar+28064 
+5

Heron's formula can be used when you just know the length of each side. This says

Area = √[s*(s-a)*(s-b)*(s-c)]  where a, b and c are the lengths of the sides and s = (a+b+c)/2.

Here: s = (5+12+9)/2 = 13, so:

$${\mathtt{Area}} = {\sqrt{{\mathtt{13}}{\mathtt{\,\times\,}}\left({\mathtt{13}}{\mathtt{\,-\,}}{\mathtt{5}}\right){\mathtt{\,\times\,}}\left({\mathtt{13}}{\mathtt{\,-\,}}{\mathtt{12}}\right){\mathtt{\,\times\,}}\left({\mathtt{13}}{\mathtt{\,-\,}}{\mathtt{9}}\right)}} \Rightarrow {\mathtt{Area}} = {\mathtt{20.396\: \!078\: \!054\: \!371\: \!139\: \!3}}$$

Area ≈ 20.396

 Jul 25, 2014
 #1
avatar+28064 
+5
Best Answer

Heron's formula can be used when you just know the length of each side. This says

Area = √[s*(s-a)*(s-b)*(s-c)]  where a, b and c are the lengths of the sides and s = (a+b+c)/2.

Here: s = (5+12+9)/2 = 13, so:

$${\mathtt{Area}} = {\sqrt{{\mathtt{13}}{\mathtt{\,\times\,}}\left({\mathtt{13}}{\mathtt{\,-\,}}{\mathtt{5}}\right){\mathtt{\,\times\,}}\left({\mathtt{13}}{\mathtt{\,-\,}}{\mathtt{12}}\right){\mathtt{\,\times\,}}\left({\mathtt{13}}{\mathtt{\,-\,}}{\mathtt{9}}\right)}} \Rightarrow {\mathtt{Area}} = {\mathtt{20.396\: \!078\: \!054\: \!371\: \!139\: \!3}}$$

Area ≈ 20.396

Alan Jul 25, 2014

18 Online Users

avatar
avatar