+0  
 
0
345
1
avatar+598 

Triangle $\triangle ABC$ has a right angle at $C$, $\angle A = 60^\circ$, and $AC=10$. Find the radius of the incircle of $\triangle ABC$

michaelcai  Oct 2, 2017
 #1
avatar+88871 
+2

See the following image :

 

 

 

The center of the  incircle will be the intersection  of the angle bisectors shown

 

And the find the x coordinate of the center by solving these two equations :

 

y  = tan (135) [x -10sqrt(3)]       and  y  = tan(60) [x - 10sqrt (3)] + 10

 

Set these equations equal   and we have

 

tan (135) [x -10sqrt(3)]   = tan(60) [x - 10sqrt (3)] + 10       simplify

 

-1 [x - 10sqrt (3) ]   =  sqrt (3) [ x  - 10sqrt (3) ] + 10

 

10sqrt (3)  -  x   =  sqrt (3) x  - 30 + 10

 

x ( sqrt (3) + 1 )  =  10sqrt (3) + 20

 

x ( sqrt (3)  + 1)   =  10 [ sqrt (3)  + 2 ]

 

x =   10 [  sqrt (3)  + 2 ] / [ sqrt (3)  + 1 ]            multiply  top /bottom  by  sqrt (3) - 1     and we have

 

x  = 10 [  sqrt (3)  + 2 ] [ sqrt (3) - 1 ] /  [ 3 - 1]

 

x =  10  [  sqrt (3)  + 2 ] [ sqrt (3) - 1 ] /  [ 2]

 

x =  5 [ 3 + sqrt (3)  - 2]

 

x  =  5 [ 1 + sqrt (3) ]  =  5  + 5sqrt (3)

 

And the y coordinate of the center is :

 

And    y =   -1 [ 5 + 5sqrt (3) - 10sqrt (3) ]    =  -1 [  5 - 5sqrt (3) ]  =  5sqrt (3) - 5  =

 

5 [ sqrt (3)  - 1 ]       and this is the radius of the incircle

 

 

 

cool cool cool

CPhill  Oct 2, 2017

22 Online Users

New Privacy Policy

We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive information about your use of our website.
For more information: our cookie policy and privacy policy.