Find sin \angle ACB.
Law of Cosines
6^2 = 7^2 + 5^2 - 2(7)(5)cosACB
[ 6^2 - 7^2 - 5^2 ] / [ -2 (7)(5) ] = cos ACB
-38 / -70 = cos ACB = 19/35
sin ACB = sqrt [ 1 - (19/35)^2 ] = sqrt [ 1 - 361/1225] = sqrt [ 864]/ 35 = 12sqrt(6) / 35