+0  
 
0
32
1
avatar+842 

In triangle PQR, M is the midpoint of PQ. Let X be the point on QR such that PX bisects angle QPR, and let the perpendicular bisector of PQ intersect AX at Y. If PQ = 36, PR = 22, QR = 26, and MY = 8, then find the area of triangle PQR

 Mar 4, 2024

Best Answer 

 #1
avatar+399 
+2

Apply the heron's formula directly on triangle PQR:

The semiperimeter is \(\frac{36+22+26}{2}=42\).

\([PQR] = \sqrt{42*(6)*(20)*(16)}=\sqrt{80640}=48\sqrt{35}\).

(The [PQR] notation means area).

 Mar 5, 2024
 #1
avatar+399 
+2
Best Answer

Apply the heron's formula directly on triangle PQR:

The semiperimeter is \(\frac{36+22+26}{2}=42\).

\([PQR] = \sqrt{42*(6)*(20)*(16)}=\sqrt{80640}=48\sqrt{35}\).

(The [PQR] notation means area).

hairyberry Mar 5, 2024

2 Online Users