+0  
 
0
30
1
avatar+0 

In triangle $ABC$, let the perpendicular bisector of $BC$ intersect $BC$ and $AC$ at $D$ and $E$, respectively. If $BC = 20$ and $\angle C = 15^\circ$, then find the length of $BE$.

 Feb 12, 2024
 #1
avatar+129850 
+1

 

 

CD = BD   = 10

ED = ED

Thus by LL , triangle CDE  is  congruent to triangle BDE

So CE = BE

 

sin CED / CD  = sin CDE / CE

 

sin 75 / 10  = sin 90 / CE

 

CE  =  10 sin 75  =  BE ≈  10.35

 

cool cool cool

 Feb 12, 2024

1 Online Users