+0  
 
+1
839
1
avatar+75 

In $\triangle ABC$, we have $AB = AC = 13$ and $BC = 10$. Let $M$ be the midpoint of $\overline{AB}$ and $N$ be on $\overline{BC}$ such that $\overline{AN}$ is an altitude of $\triangle ABC$. If $\overline{AN}$ and $\overline{CM}$ intersect at $X$, then what is $AX$?

eileenthecoolbean  Jul 20, 2017
 #1
avatar+89803 
+2

 

 

Orient the triangle according to the following pic :

 

 

 

ABC is isosceles....altitude AN forms leg 12 of a 5-12-13  right triangle

 

The midpoint of  AB = M =  (2.5, 6)

 

From M, draw a perpendicular to BC.....call this  DM  = 6 

 

And because DM is parallel to the altitude...triangles CDM and CNX will be similar

 

So

 

 DM  / CD = NX / CN

 

And CD =  BC - BD  =  10 - 2.5  = 7.5

And CN = 1/2 of BC  = 5

 

So

 

 

6 / 7.5  =  NX / 5

 

(5 *  6 ) /  7.5 =  NX

 

30 / 7.5  = NX

 

4 = NX

 

But  AN - NX  =  AX

 

So 12 - 4  = AX  =  8

 

 

 

cool cool cool

CPhill  Jul 20, 2017
edited by CPhill  Jul 21, 2017

26 Online Users

avatar
avatar

New Privacy Policy

We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive information about your use of our website.
For more information: our cookie policy and privacy policy.