We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive pseudonymised information about your use of our website. cookie policy and privacy policy.
 
+0  
 
+1
371
4
avatar+1432 

Let A, B, and C be three points on the curve xy = 1 (which is a hyperbola). Prove that the orthocenter of triangle ABC also lies on the curve xy = 1.

 

Thank you!

Best Answer 

 #1
avatar+21978 
+2

Let A, B, and C be three points on the curve xy = 1 (which is a hyperbola).
Prove that the orthocenter of triangle ABC also lies on the curve xy = 1.

 

\(\text{Let $A= (x_A,y_A) = (x_A, \frac{1}{x_A} ) $ } \\ \text{Let $B= (x_B,y_B) = (x_B, \frac{1}{x_B} ) $ } \\ \text{Let $C= (x_C,y_C) = (x_C, \frac{1}{x_C} ) $ } \)

 

1.

\(\displaystyle \text{The slope of $\overline{AB}$ is $\frac{y_B-y_A}{x_B-x_A} = \frac{ \frac{1}{x_B} -\frac{1}{x_A} }{ x_B-x_A } = \frac{x_A-x_B}{x_Ax_B(x_B-x_A)} = -\frac{1}{x_Ax_B} $} \\ \displaystyle \text{ So, the slope of the altitude, which is perpendicular to $\overline{AB}$ is $-\frac{1}{-\frac{1}{x_Ax_B}} = x_Ax_B $}\)

 

\(\displaystyle \text{The equation of the altitude from C to $\overline{AB}$ is:}\)

\(\begin{array}{|rcll|} \hline y-y_C &=& m(x-x_C) \quad & | \quad m = x_Ax_B \\ y &=& y_C + x_Ax_B(x-x_C) \\ \mathbf{y} & \mathbf{=} & \mathbf{\dfrac{1}{x_C}+ x_Ax_B(x-x_C)} \\ \hline \end{array}\)

 

2.

\(\displaystyle \text{The slope of $\overline{BC}$ is $\frac{y_C-y_B}{x_C-x_B} = \frac{ \frac{1}{x_C} -\frac{1}{x_B} }{ x_C-x_B } = \frac{x_B-x_C}{x_Bx_C(x_C-x_B)} = -\frac{1}{x_Bx_C} $} \\ \displaystyle \text{ So, the slope of the altitude, which is perpendicular to $\overline{BC}$ is $-\frac{1}{-\frac{1}{x_Bx_C}} = x_Bx_C $}\)

 

\(\displaystyle \text{The equation of the altitude from A to $\overline{BC}$ is:}\)

\(\begin{array}{|rcll|} \hline y-y_A &=& m(x-x_A) \quad & | \quad m = x_Bx_C \\ y &=& y_A + x_Bx_C(x-x_A) \\ \mathbf{y} & \mathbf{=} & \mathbf{\dfrac{1}{x_A}+ x_Bx_C(x-x_A)} \\ \hline \end{array}\)

 

Solve the equations to find the intersection point of the altitudes:

 

3. \(x_{\text{orthocenter}} = \ ?\)

\(\begin{array}{|rcll|} \hline \dfrac{1}{x_C}+ x_Ax_B(x-x_C) &=& \dfrac{1}{x_A}+ x_Bx_C(x-x_A) \\ \dfrac{1}{x_C}+ x_Ax_Bx-x_Ax_Bx_C &=& \dfrac{1}{x_A}+ x_Bx_Cx-x_Bx_Cx_A \\ \dfrac{1}{x_C}+ x_Ax_Bx &=& \dfrac{1}{x_A}+ x_Bx_Cx \\ x_Ax_Bx-x_Bx_Cx &=& \dfrac{1}{x_A}-\dfrac{1}{x_C} \\ x_Bx(x_A-x_C) &=& \dfrac{x_C-x_A}{x_Ax_C} \\ x_Bx(x_A-x_C) &=& -\dfrac{x_A-x_C}{x_Ax_C} \\ x_Bx &=& -\dfrac{1}{x_Ax_C} \\ \mathbf{x_{\text{orthocenter}}} & \mathbf{=} & \mathbf{ -\dfrac{1}{x_Ax_Bx_C} } \\ \hline \end{array}\)

 

4. \(y_{\text{orthocenter}} = \ ?\)

\(\begin{array}{|rcll|} \hline y_{\text{orthocenter}} &=& \dfrac{1}{x_C}+ x_Ax_B(x_{\text{orthocenter}}-x_C) \\ &=& \dfrac{1}{x_C}+ x_Ax_B(-\dfrac{1}{x_Ax_Bx_C}-x_C) \\ &=& \dfrac{1}{x_C}- \dfrac{x_Ax_B}{x_Ax_Bx_C}-x_Ax_Bx_C \\ &=& \dfrac{1}{x_C}- \dfrac{1}{ x_C}-x_Ax_Bx_C \\ \mathbf{y_{\text{orthocenter}}} & \mathbf{=} & \mathbf{ -x_Ax_Bx_C } \\ \hline \end{array}\)

 

\(\text{The orthocenter of triangle ABC lies on the curve $xy = 1$, if $x_{\text{orthocenter}}\cdot y_{\text{orthocenter}} = 1$ } \)

\(\begin{array}{|rcll|} \hline x_{\text{orthocenter}}\cdot y_{\text{orthocenter}} &=& -\dfrac{1}{x_Ax_Bx_C} \cdot (-x_Ax_Bx_C) \\ &=& \dfrac{x_Ax_Bx_C}{x_Ax_Bx_C} \\ &=& 1\checkmark \\ \hline \end{array}\)

 

laugh

 Jun 8, 2018
 #1
avatar+21978 
+2
Best Answer

Let A, B, and C be three points on the curve xy = 1 (which is a hyperbola).
Prove that the orthocenter of triangle ABC also lies on the curve xy = 1.

 

\(\text{Let $A= (x_A,y_A) = (x_A, \frac{1}{x_A} ) $ } \\ \text{Let $B= (x_B,y_B) = (x_B, \frac{1}{x_B} ) $ } \\ \text{Let $C= (x_C,y_C) = (x_C, \frac{1}{x_C} ) $ } \)

 

1.

\(\displaystyle \text{The slope of $\overline{AB}$ is $\frac{y_B-y_A}{x_B-x_A} = \frac{ \frac{1}{x_B} -\frac{1}{x_A} }{ x_B-x_A } = \frac{x_A-x_B}{x_Ax_B(x_B-x_A)} = -\frac{1}{x_Ax_B} $} \\ \displaystyle \text{ So, the slope of the altitude, which is perpendicular to $\overline{AB}$ is $-\frac{1}{-\frac{1}{x_Ax_B}} = x_Ax_B $}\)

 

\(\displaystyle \text{The equation of the altitude from C to $\overline{AB}$ is:}\)

\(\begin{array}{|rcll|} \hline y-y_C &=& m(x-x_C) \quad & | \quad m = x_Ax_B \\ y &=& y_C + x_Ax_B(x-x_C) \\ \mathbf{y} & \mathbf{=} & \mathbf{\dfrac{1}{x_C}+ x_Ax_B(x-x_C)} \\ \hline \end{array}\)

 

2.

\(\displaystyle \text{The slope of $\overline{BC}$ is $\frac{y_C-y_B}{x_C-x_B} = \frac{ \frac{1}{x_C} -\frac{1}{x_B} }{ x_C-x_B } = \frac{x_B-x_C}{x_Bx_C(x_C-x_B)} = -\frac{1}{x_Bx_C} $} \\ \displaystyle \text{ So, the slope of the altitude, which is perpendicular to $\overline{BC}$ is $-\frac{1}{-\frac{1}{x_Bx_C}} = x_Bx_C $}\)

 

\(\displaystyle \text{The equation of the altitude from A to $\overline{BC}$ is:}\)

\(\begin{array}{|rcll|} \hline y-y_A &=& m(x-x_A) \quad & | \quad m = x_Bx_C \\ y &=& y_A + x_Bx_C(x-x_A) \\ \mathbf{y} & \mathbf{=} & \mathbf{\dfrac{1}{x_A}+ x_Bx_C(x-x_A)} \\ \hline \end{array}\)

 

Solve the equations to find the intersection point of the altitudes:

 

3. \(x_{\text{orthocenter}} = \ ?\)

\(\begin{array}{|rcll|} \hline \dfrac{1}{x_C}+ x_Ax_B(x-x_C) &=& \dfrac{1}{x_A}+ x_Bx_C(x-x_A) \\ \dfrac{1}{x_C}+ x_Ax_Bx-x_Ax_Bx_C &=& \dfrac{1}{x_A}+ x_Bx_Cx-x_Bx_Cx_A \\ \dfrac{1}{x_C}+ x_Ax_Bx &=& \dfrac{1}{x_A}+ x_Bx_Cx \\ x_Ax_Bx-x_Bx_Cx &=& \dfrac{1}{x_A}-\dfrac{1}{x_C} \\ x_Bx(x_A-x_C) &=& \dfrac{x_C-x_A}{x_Ax_C} \\ x_Bx(x_A-x_C) &=& -\dfrac{x_A-x_C}{x_Ax_C} \\ x_Bx &=& -\dfrac{1}{x_Ax_C} \\ \mathbf{x_{\text{orthocenter}}} & \mathbf{=} & \mathbf{ -\dfrac{1}{x_Ax_Bx_C} } \\ \hline \end{array}\)

 

4. \(y_{\text{orthocenter}} = \ ?\)

\(\begin{array}{|rcll|} \hline y_{\text{orthocenter}} &=& \dfrac{1}{x_C}+ x_Ax_B(x_{\text{orthocenter}}-x_C) \\ &=& \dfrac{1}{x_C}+ x_Ax_B(-\dfrac{1}{x_Ax_Bx_C}-x_C) \\ &=& \dfrac{1}{x_C}- \dfrac{x_Ax_B}{x_Ax_Bx_C}-x_Ax_Bx_C \\ &=& \dfrac{1}{x_C}- \dfrac{1}{ x_C}-x_Ax_Bx_C \\ \mathbf{y_{\text{orthocenter}}} & \mathbf{=} & \mathbf{ -x_Ax_Bx_C } \\ \hline \end{array}\)

 

\(\text{The orthocenter of triangle ABC lies on the curve $xy = 1$, if $x_{\text{orthocenter}}\cdot y_{\text{orthocenter}} = 1$ } \)

\(\begin{array}{|rcll|} \hline x_{\text{orthocenter}}\cdot y_{\text{orthocenter}} &=& -\dfrac{1}{x_Ax_Bx_C} \cdot (-x_Ax_Bx_C) \\ &=& \dfrac{x_Ax_Bx_C}{x_Ax_Bx_C} \\ &=& 1\checkmark \\ \hline \end{array}\)

 

laugh

heureka Jun 8, 2018
 #2
avatar+99497 
+2

Very nice, heureka  !!!

 

 

cool cool cool

CPhill  Jun 8, 2018
 #3
avatar+21978 
+1

Thank you CPhill

 

laugh

heureka  Jun 11, 2018
 #4
avatar+1432 
+1

Thank you Heureka!

AnonymousConfusedGuy  Jun 11, 2018

21 Online Users

avatar
avatar