Use the identity: cos2(x) = 1 - sin2(x) so that the equation only conains the sin function.
cos2(x) + 3sin(x) - 3 = 0 ---> ( 1 - sin2(x) ) + 3sin(x) - 3 = 0
-sin2(x) + 3sin(x) - 2 = 0
sin2(x) - 3sin(x) + 2 = 0
( sin(x) - 2 )( sin(x) - 1 ) = 0
either sin(x) = 2 [impossible] or sin(x) = 1 ---> x = pi/2