Let f(x) = 2 - cos(x) + sin(x)^2. Find the minimum and maximum values of f(x).
Let f(x) = 2 - cos(x) + sin(x)^2. Find the minimum and maximum values of f(x).
Hello Guest!
\(f(x) = 2 - cos(x) + sin^2(x)\\ \frac{df(x)}{dx}= sin(x)+2sin(x)cos(x) =0\)
\(sin(x)(1+2cos(x))=0\)
\(sin(x)=0\\ x=arcsin(0)\\ \color{blue}x_1=0\\ \color{blue}x_3=\pi =180^\circ\\ \color{blue}x_5=2\pi=360^\circ \)
\(1+2cos(x)=0\\ cos(x)=-\frac{1}{2}\\ x=arccos(-\frac{1}{2})\)
\(x_2=\frac{2}{3}\pi=120^\circ\\ x_4=\frac{4}{3}\pi=240^\circ\)
!