We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive pseudonymised information about your use of our website. cookie policy and privacy policy.
 
+0  
 
0
181
2
avatar

Consider the line with equation \[(2-i)z + (2+i)\overline{z} = 20.\]
Where does this line intersect the real axis?

 Jan 18, 2019
 #1
avatar+23137 
+8

Consider the line with equation

\( (2-i)z + (2+i)\overline{z} = 20. \)

 \[(2-i)z + (2+i)\overline{z} = 20.\]
Where does this line intersect the real axis?

 

On the real axis:  \(z = \overline z\)

\(\begin{array}{|rcll|} \hline (2-i)z + (2+i)\overline{z} &=& 20 \quad & | \quad z = \overline z \\ (2-i)z + (2+i)z &=& 20 \\ z\Big((2-i)+(2+i)\Big) &=& 20 \\ z(2-i+2+i) &=& 20 \\ 4z &=& 20 \\ \mathbf{ z } & \mathbf{=} & \mathbf{5} \\ \hline \end{array}\)

 

The line intersect the real axis at 5.

 

laugh

 Jan 18, 2019

10 Online Users

avatar