+0  
 
0
1750
2
avatar+466 

sec 2x = (sec2 x)/ (2 - sec2 x)

Show that the left side equals the right side.

 Mar 21, 2016

Best Answer 

 #2
avatar+129852 
+10

sec 2x = (sec^2 x)/ (2 - sec^2 x)

 

1 / cos2x  = (sec^2x) / (2 - sec^2x)  

 

Note, Shades....since    5/10   = 1/2    then it is also true that 10/5  = 2/1  .....thus....we can "flip" both fractions and write them as :

 

cos2x / 1  =  (2 - sec^2x) / (sec^2 x)  

 

cos2x =  2/sec^2x   -  sec^2x/ sec^2x

 

cos2x   = 2/ (1/cos^2x)  - 1

 

cos2x   = 2cos^2x  - 1        which is an identity   

 

 

 

cool cool cool 

 Mar 21, 2016
 #2
avatar+129852 
+10
Best Answer

sec 2x = (sec^2 x)/ (2 - sec^2 x)

 

1 / cos2x  = (sec^2x) / (2 - sec^2x)  

 

Note, Shades....since    5/10   = 1/2    then it is also true that 10/5  = 2/1  .....thus....we can "flip" both fractions and write them as :

 

cos2x / 1  =  (2 - sec^2x) / (sec^2 x)  

 

cos2x =  2/sec^2x   -  sec^2x/ sec^2x

 

cos2x   = 2/ (1/cos^2x)  - 1

 

cos2x   = 2cos^2x  - 1        which is an identity   

 

 

 

cool cool cool 

CPhill Mar 21, 2016

0 Online Users