(sin x)/(1 + cos x) + (1+ cos x)/(sin x) = 2 csc x
The first thing that always strikes me here, Shades, is to get a common denominator on the left, and then see if something "falls out."
[ (sinx)(sinx) + (1 + cosx)(1 + cosx)] / [ sinx (1 + cosx)] =
[sin^2x + 1 + 2cosx + cos^2x] / [ sinx (1 + cosx)] =
[ (sin^2x + cos^2x) + 1 + 2cosx] / [ sinx (1 + cosx)] =
[ 1 + 1 + 2cosx ] / [ sinx ( 1 + cosx) ] =
[ 2 + 2cosx] / [ sinx ( 1 + cosx) ] =
[ 2 ( 1 + cos x)] / [ sinx (1 + cosx) ] =
2 / sinx =
2 (1/sinx) =
2 (csc x)