\int_0^{\frac{\pi}{2}} \cos^m x \sin^m x \, dx = 2^{-m} \int_0^{\frac{\pi}{2}} \cos^m x \, dx
∫π20cosmxsinmxdx=2−m∫π20cosmxdx
LHS=∫π20cosmxsinmxdx=∫π20(cosxsinx)mdx=2−m∫π20(2cosxsinx)mdx=2−m∫π20(sin(2x))mdxletg=2xwhenx=0,g=0whenx=π2g=π=2−m∫π0(sing)mdxdgdg=2−m∫π0(sing)m12dg
Below is perhaps less formal.
It can be deduced by knowing what the cos and sin graphs look like
and knowing they are the same except there is a phase shift of pi/2 radians
=2−m∫ππ2(sing)mdg=2−m∫π20(cosg)mdg=2−m∫π20(cosx)mdx=RHS
QED
LaTex:
LHS\\=\int_0^{\frac{\pi}{2}} \cos^m x \sin^m x \, dx\\
=\int_0^{\frac{\pi}{2}} (\cos x \sin x)^m \, dx \\
=2^{-m}\int_0^{\frac{\pi}{2}} (2\cos x \sin x)^m \, dx \\
=2^{-m}\int_0^{\frac{\pi}{2}} (sin(2x))^m \, dx \\
\qquad let \;\;g=2x\\
\qquad when\;\;x=0,\;g=0\qquad when\;\;x=\frac{\pi}{2}\;\;g=\pi\\
=2^{-m}\int_0^{\pi } (sing)^m \, \frac{dx}{dg}\;dg \\
=2^{-m}\int_0^{\pi } (sing)^m \, \frac{1}{2}\;d