Loading [MathJax]/jax/output/SVG/jax.js
 
+0  
 
+2
420
1
avatar+876 

Prove that  π20cosmxsinmxdx=2mπ20cosmxdx

 Dec 21, 2021
 #1
avatar+118703 
+2

\int_0^{\frac{\pi}{2}} \cos^m x \sin^m x \, dx = 2^{-m} \int_0^{\frac{\pi}{2}} \cos^m x \, dx

 

π20cosmxsinmxdx=2mπ20cosmxdx

 

LHS=π20cosmxsinmxdx=π20(cosxsinx)mdx=2mπ20(2cosxsinx)mdx=2mπ20(sin(2x))mdxletg=2xwhenx=0,g=0whenx=π2g=π=2mπ0(sing)mdxdgdg=2mπ0(sing)m12dg

 

Below is perhaps less formal.

It can be deduced by knowing what the cos and sin graphs look like

and knowing they are the same except there is a phase shift of pi/2 radians

 

 

=2mππ2(sing)mdg=2mπ20(cosg)mdg=2mπ20(cosx)mdx=RHS

 

QED

 

 

 

LaTex:

LHS\\=\int_0^{\frac{\pi}{2}} \cos^m x \sin^m x \, dx\\
=\int_0^{\frac{\pi}{2}} (\cos x \sin x)^m \, dx \\
=2^{-m}\int_0^{\frac{\pi}{2}} (2\cos x \sin x)^m \, dx \\
=2^{-m}\int_0^{\frac{\pi}{2}} (sin(2x))^m \, dx \\
\qquad let \;\;g=2x\\
\qquad when\;\;x=0,\;g=0\qquad when\;\;x=\frac{\pi}{2}\;\;g=\pi\\
=2^{-m}\int_0^{\pi } (sing)^m \, \frac{dx}{dg}\;dg \\
=2^{-m}\int_0^{\pi } (sing)^m \, \frac{1}{2}\;d

 Dec 23, 2021

5 Online Users

avatar
avatar