+0

# Trig Math Questions

0
315
3
+14

1) Solve the following equation, where theta is in the reals.

4cos(2theta)+3=0

2)Solve for x over the interval of [0, 2pi]

-2 tan^2x=0

Please include a little bit of explanation, thanks

Dec 31, 2018

#1
+111328
+2

4cos(2 theta)+3=0     subtract   3 from both sides

4 cos (2 theta)  =  - 3     divide both sides by 4

cos (2 theta)  = -3 / 4

cos (theta)  =  -3/4    at  ≈ [ 2.42   ±  2pi ]  rads  and at ≈ [3.86 ± 2pi ]  rads

So

cos ( 2 theta) =   (  [ 2.42 ± 2pi ] / 2   )  rads   and   at   ( [ 3.86 ± 2pi ] / 2 rads )  =

[ 1.21 ± pi ] rads    and   [ 1.93 ± pi ]  rads

Dec 31, 2018
edited by CPhill  Dec 31, 2018
#2
+111328
+2

2)Solve for x over the interval of [0, 2pi]

-2 tan^2x=0

Divide both sides by - 2

tan^2  x  = 0        take the square root and we get that

tan x  =  0

This happens at   x =   0 ,  pi  and 2pi    rads     on the requested interval

Dec 31, 2018
#3
+111328
+1

Comet's second queston is actually this :

2)Solve for x over the interval of [0, 2pi]

-2 + tan^2x=0

tan^2x  =  2       taske both square roots

tan x = ± √2

We either have that

tan x = √2

Take the tan inverse to find the angle in  rads

arcctan (√2)  ≈ .955 rads    this will also occur at   pi +  .955 rads = 4.096 rads

Also

tan x = -√2

So....the four answers are ≈   [ .955 , 2.19, 4.096 and 5.328 ]   rads

Dec 31, 2018