In triangle ABC, angle BCA = pi/6, AB = \(16\), and AC = \(15\)
Find the sum of all distinct possible values of BC. If there are no possible values, enter 0.
Find the sum of all distinct possible values of BC.
Hello Guest!
\(\gamma=\frac{\pi}{6}=30^o\)
law of sine
\(\frac{sin\ \gamma}{16}=\frac{sin\ \beta}{15}\\ \frac{sin\ 30^o}{16}=\frac{sin\ \beta}{15}\\ sin\ \beta=\frac{15\cdot sin\ 30^o}{16}\\ \beta=arcsin\ \frac{15\cdot 0.5}{16}\\ \color{blue}\beta \in\{27.953^o,62.047^o\}\)
\(\alpha = 180^o-30^o -\{62.047^o,27.953^o\} \\ \alpha \in \{87.9532^o,122.0468^o\}\)
\(\frac{a_1}{sin\ \alpha_1}=\frac{16}{sin\ 30^o}\\ a_1=\frac{16\cdot sin\ 87.9532^o}{0.5}\\ \color{blue}a_1=31.9796\)
\(\frac{a_2}{sin\ \alpha_2}=\frac{16}{sin\ 30^o}\\ a_2=\frac{16\cdot sin\ 122.0468^o}{0.5}\\ \color{blue}a_2=27.1237\)
\(The\ sum\ of\ all\ distinct\ possible\ values\ of\ BC\ is\ \color{blue}a_1+a_2=59.1 \)
!