+0  
 
0
431
1
avatar

Compute \(\cos \left( \frac{45^\circ}{2} \right)\)

 Jul 29, 2020
 #1
avatar+1094 
+8

For this, we can use half angle formulas. Since 45 degrees is a common angle on the unit circle, we can easily see that it's sine and cosine is \(\frac{\sqrt 2}{2}\). Using the half angle formula for cosines, which is: \(\cos \frac{A}{2}=\pm \sqrt{\frac{1+\cos A}{2}}\), we can get our answer. 

 

Here is what you should do:

Plug in \(\frac{\sqrt 2}{2}\) for cos A and solve.

 

Good luck! smiley

 Jul 29, 2020

3 Online Users

avatar