+0  
 
0
562
2
avatar

Solve 2cos^2θ/2 = cos2θ for 0º≤θ≤360º. (Hint: Graph each side of the equation and find the points of intersection.)

A) ≈73.8º; 260.4º

B) ≈141.3º; 218.7º

C) ≈225.7º; 315.8º

D) ≈51.7º; 138.2º

Guest Oct 22, 2014

Best Answer 

 #2
avatar+87303 
+5

Using cos^(x/2) = [1 + cos(x)] / 2

Then

2 * [1 + cos(x)] / 2 = cos(2x)  →

1 + cos(x) = cos(2x)  →

And using  cos(2x) = 2cos^2(x) - 1

1 + cosx = 2cos^2(x) - 1    →

2cos^2(x) - cosx - 2 = 0

let x = cosx

2x^2 -x - 2 = 0     .....using the on-site solver......

$${\mathtt{2}}{\mathtt{\,\times\,}}{{\mathtt{x}}}^{{\mathtt{2}}}{\mathtt{\,-\,}}{\mathtt{x}}{\mathtt{\,-\,}}{\mathtt{2}} = {\mathtt{0}} \Rightarrow \left\{ \begin{array}{l}{\mathtt{x}} = {\mathtt{\,-\,}}{\frac{\left({\sqrt{{\mathtt{17}}}}{\mathtt{\,-\,}}{\mathtt{1}}\right)}{{\mathtt{4}}}}\\
{\mathtt{x}} = {\frac{\left({\sqrt{{\mathtt{17}}}}{\mathtt{\,\small\textbf+\,}}{\mathtt{1}}\right)}{{\mathtt{4}}}}\\
\end{array} \right\} \Rightarrow \left\{ \begin{array}{l}{\mathtt{x}} = -{\mathtt{0.780\: \!776\: \!406\: \!404\: \!415\: \!1}}\\
{\mathtt{x}} = {\mathtt{1.280\: \!776\: \!406\: \!404\: \!415\: \!1}}\\
\end{array} \right\}$$

So, using the cosine inverse, and ignoring the second answer, we have.....

cos-1 [(1 - √17)/4] = x ......  so x = 141.331°  and x = 218.668°

 

CPhill  Oct 22, 2014
 #1
avatar+92805 
+5
Melody  Oct 22, 2014
 #2
avatar+87303 
+5
Best Answer

Using cos^(x/2) = [1 + cos(x)] / 2

Then

2 * [1 + cos(x)] / 2 = cos(2x)  →

1 + cos(x) = cos(2x)  →

And using  cos(2x) = 2cos^2(x) - 1

1 + cosx = 2cos^2(x) - 1    →

2cos^2(x) - cosx - 2 = 0

let x = cosx

2x^2 -x - 2 = 0     .....using the on-site solver......

$${\mathtt{2}}{\mathtt{\,\times\,}}{{\mathtt{x}}}^{{\mathtt{2}}}{\mathtt{\,-\,}}{\mathtt{x}}{\mathtt{\,-\,}}{\mathtt{2}} = {\mathtt{0}} \Rightarrow \left\{ \begin{array}{l}{\mathtt{x}} = {\mathtt{\,-\,}}{\frac{\left({\sqrt{{\mathtt{17}}}}{\mathtt{\,-\,}}{\mathtt{1}}\right)}{{\mathtt{4}}}}\\
{\mathtt{x}} = {\frac{\left({\sqrt{{\mathtt{17}}}}{\mathtt{\,\small\textbf+\,}}{\mathtt{1}}\right)}{{\mathtt{4}}}}\\
\end{array} \right\} \Rightarrow \left\{ \begin{array}{l}{\mathtt{x}} = -{\mathtt{0.780\: \!776\: \!406\: \!404\: \!415\: \!1}}\\
{\mathtt{x}} = {\mathtt{1.280\: \!776\: \!406\: \!404\: \!415\: \!1}}\\
\end{array} \right\}$$

So, using the cosine inverse, and ignoring the second answer, we have.....

cos-1 [(1 - √17)/4] = x ......  so x = 141.331°  and x = 218.668°

 

CPhill  Oct 22, 2014

6 Online Users

New Privacy Policy

We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive information about your use of our website.
For more information: our cookie policy and privacy policy.