+0

# Trig stinks lol

0
572
7

hey guys and gals I’m Kayla and I’m kinda new to this site but I need a LOT of help on my trig lol, so I decided to ask some questions if that’s okay! Answers are greatly appreciated thanks :)

1. Convert 136(degrees) 14’ 18” to decimal form

2. Convert -22.853(degreees) to DMS form

3. If cos()=1/3 use the trigonometric identities to find tan()

if you you can answer any of these THANK YOU, also don’t be afraid to DM me if you want to chat or anything lol!

Nov 5, 2017

#1
+3

Welcome to the forum!! 1.    1 '  =  1/60 °     →     14 '  =  14/60 °

1 "  =  1/3600 °     →     18 "  =  18/3600 °

136 ° + 14 ' + 18 "  =

136 ° + 14/60 ° + 18/3600 °  =

81743/600 °     ≈     136.238°

2.     1 °  =  60 '     →     0.853 °  =  0.853 * 60 '  =  51.18 '

1 '   =  60 "     →     0.18 '  =  0.18 * 60 "  =  10.8  "

-( 22.853 ° )  =

-( 22 ° + 0.853 ° )  =

-( 22 ° + 51.18 ' )  =

-( 22 ° + 51 ' + 0.18 ' )  =

-( 22 ° + 51 ' + 10.8 " )  =  - 22 ° 51 ' 10.8 "

3.     cos θ  =  1/3

Use the Pythagorean identity to find  sin θ .

sin2 θ  +  cos2 θ   =   1

sin2 θ  +  (1/3)2  =  1

sin2 θ  +  1/9  =  1

sin2 θ  =  1 - 1/9

sin2 θ  =  8/9

sin θ  =  ±√( 8/9 )    =    ± √8 / 3          Use these values for  sin  and  cos  in the definition of tan .

tan θ  =  sin θ / cos θ

tan θ  =  [ ± √8 / 3 ] / [ 1/3 ]                 Invert the second fraction and multiply.

tan θ  =  [ ± √8 / 3 ] * [ 3/1 ]

tan θ  =  ± √8

tan θ  =  ± 2√2

Nov 5, 2017

#1
+3

Welcome to the forum!! 1.    1 '  =  1/60 °     →     14 '  =  14/60 °

1 "  =  1/3600 °     →     18 "  =  18/3600 °

136 ° + 14 ' + 18 "  =

136 ° + 14/60 ° + 18/3600 °  =

81743/600 °     ≈     136.238°

2.     1 °  =  60 '     →     0.853 °  =  0.853 * 60 '  =  51.18 '

1 '   =  60 "     →     0.18 '  =  0.18 * 60 "  =  10.8  "

-( 22.853 ° )  =

-( 22 ° + 0.853 ° )  =

-( 22 ° + 51.18 ' )  =

-( 22 ° + 51 ' + 0.18 ' )  =

-( 22 ° + 51 ' + 10.8 " )  =  - 22 ° 51 ' 10.8 "

3.     cos θ  =  1/3

Use the Pythagorean identity to find  sin θ .

sin2 θ  +  cos2 θ   =   1

sin2 θ  +  (1/3)2  =  1

sin2 θ  +  1/9  =  1

sin2 θ  =  1 - 1/9

sin2 θ  =  8/9

sin θ  =  ±√( 8/9 )    =    ± √8 / 3          Use these values for  sin  and  cos  in the definition of tan .

tan θ  =  sin θ / cos θ

tan θ  =  [ ± √8 / 3 ] / [ 1/3 ]                 Invert the second fraction and multiply.

tan θ  =  [ ± √8 / 3 ] * [ 3/1 ]

tan θ  =  ± √8

tan θ  =  ± 2√2

hectictar Nov 5, 2017
#2
+1

Wow thank you so much! This helps a lot! :)

KaylaRT  Nov 6, 2017
#3
-1

Welcome I hope you have a great time here!   ProMagma  Nov 6, 2017
edited by ProMagma  Nov 6, 2017
#4
0

I think her photo is from Google! I have the link to the girl in the photo! not sure if its her or not, but I gotta make sure before I say anything else

Nov 6, 2017
#7
-2

This profile picture is not real  I found many images with this..