+0  
 
0
201
2
avatar

Find the points where the line goes through the origin with slope -2 intersects the Unit circle. Give exact answers

Guest Apr 9, 2017

Best Answer 

 #2
avatar+4728 
+2

 

The coordinates of the point that intersect the unit circle are (x,y)

 

According to the Pythagorean theorem:

x2 + y2 = 12

x2 + y2 = 1

 

According to the problem statement:

y/x = -2

 

So,

y = -2x

 

Substitute:

x2 + (-2x)2 = 1

x2 + 4x2 = 1

5x2 = 1

x2 = 1/5

x = ±√(1/5)

x = ±√(5) / 5

 

y = -2[ ±√(5) / 5 ]

y = ∓2√(5) / 5

 

The points are: \((\frac{\sqrt5}{5},-\frac{2\sqrt5}{5})\)    and    \((-\frac{\sqrt5}{5},\frac{2\sqrt5}{5})\)

hectictar  Apr 9, 2017
Sort: 

2+0 Answers

 #1
avatar+77005 
+2

 

The line has the equation  y = -2x      (1)

The circle has the equation  x^2 + y^2  = 1     (2)

 

Sub (1)  into (2)

 

x^2 + (-2x)^2   = 1

 

x^2 + 4x^2  = 1

 

5x^2  =  1           divide both sides by 5

 

x^2  =   1/5           take both roots

 

x  = ± 1/√5

 

And using (1)   when   x  = 1/√5,   y  = -2/√5

And when  x = -1/√5,  y  =  -2 (-1/ √5)  =   2/√5

 

So.....the intersection points are   ( 1/√5, -2 /√5 )   and   ( -1/√5,  2/√5)

 

 

cool cool cool

CPhill  Apr 9, 2017
 #2
avatar+4728 
+2
Best Answer

 

The coordinates of the point that intersect the unit circle are (x,y)

 

According to the Pythagorean theorem:

x2 + y2 = 12

x2 + y2 = 1

 

According to the problem statement:

y/x = -2

 

So,

y = -2x

 

Substitute:

x2 + (-2x)2 = 1

x2 + 4x2 = 1

5x2 = 1

x2 = 1/5

x = ±√(1/5)

x = ±√(5) / 5

 

y = -2[ ±√(5) / 5 ]

y = ∓2√(5) / 5

 

The points are: \((\frac{\sqrt5}{5},-\frac{2\sqrt5}{5})\)    and    \((-\frac{\sqrt5}{5},\frac{2\sqrt5}{5})\)

hectictar  Apr 9, 2017

14 Online Users

avatar
avatar
avatar
avatar
We use cookies to personalise content and ads, to provide social media features and to analyse our traffic. We also share information about your use of our site with our social media, advertising and analytics partners.  See details