We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive pseudonymised information about your use of our website. cookie policy and privacy policy.

+0

# Trig

0
1235
2

Find the points where the line goes through the origin with slope -2 intersects the Unit circle. Give exact answers

Apr 9, 2017

### Best Answer

#2
+2 The coordinates of the point that intersect the unit circle are (x,y)

According to the Pythagorean theorem:

x2 + y2 = 12

x2 + y2 = 1

According to the problem statement:

y/x = -2

So,

y = -2x

Substitute:

x2 + (-2x)2 = 1

x2 + 4x2 = 1

5x2 = 1

x2 = 1/5

x = ±√(1/5)

x = ±√(5) / 5

y = -2[ ±√(5) / 5 ]

y = ∓2√(5) / 5

The points are: $$(\frac{\sqrt5}{5},-\frac{2\sqrt5}{5})$$    and    $$(-\frac{\sqrt5}{5},\frac{2\sqrt5}{5})$$

.
Apr 9, 2017

### 2+0 Answers

#1
+2

The line has the equation  y = -2x      (1)

The circle has the equation  x^2 + y^2  = 1     (2)

Sub (1)  into (2)

x^2 + (-2x)^2   = 1

x^2 + 4x^2  = 1

5x^2  =  1           divide both sides by 5

x^2  =   1/5           take both roots

x  = ± 1/√5

And using (1)   when   x  = 1/√5,   y  = -2/√5

And when  x = -1/√5,  y  =  -2 (-1/ √5)  =   2/√5

So.....the intersection points are   ( 1/√5, -2 /√5 )   and   ( -1/√5,  2/√5)   Apr 9, 2017
#2
+2
Best Answer The coordinates of the point that intersect the unit circle are (x,y)

According to the Pythagorean theorem:

x2 + y2 = 12

x2 + y2 = 1

According to the problem statement:

y/x = -2

So,

y = -2x

Substitute:

x2 + (-2x)2 = 1

x2 + 4x2 = 1

5x2 = 1

x2 = 1/5

x = ±√(1/5)

x = ±√(5) / 5

y = -2[ ±√(5) / 5 ]

y = ∓2√(5) / 5

The points are: $$(\frac{\sqrt5}{5},-\frac{2\sqrt5}{5})$$    and    $$(-\frac{\sqrt5}{5},\frac{2\sqrt5}{5})$$

hectictar Apr 9, 2017