Hi Old Timer,
We are no ignoring your question (part 2 that is). Chris and I just have not worked out how to do it yet. ![]()
Hopefully Heueka or Alan or Tiggsy or some other clever member or guest will show us all how it is done (hopefully in a nice easy to follow fashion.)
Edit:
I hope I haven't offended anyone by using names. Maybe Rom or ElectricPavlov or Omi or geno or ... We have lots of very knowledgable people here now days. ![]()
Hi Melody, Thanks for your update....you are very always helpful...I can vouch for that!
I have a partial solution which I will post later on tomorrow (loading is a bit tough)...but need to rework as in desperation I worked back from the answer, but still not perfect.
So far I have not worked out how to derive those initial formulas that were given.
I have not looked at the rest of your logic yet, I'd really like to convince myself of the accuracy of the book extract first :/
Trigonometric Identities - 2


\(\text{Formula } 1: \boxed{\sin(A+B) = \dfrac{2\cdot \tan \left(\frac{A+B}{2} \right)} {1+\tan^2\left(\frac{A+B}{2} \right) } }\\ \text{Formula } 2: \boxed{\cos(A)-\cos(B) = -2\sin\left(\frac{A+B}{2} \right)\sin\left(\frac{A-B}{2} \right) } \\ \text{Formula } 3: \boxed{\sin(A)-\sin(B) = 2\cos\left(\frac{A+B}{2}\right)\sin \left(\frac{A-B}{2} \right) } \)
\(\begin{array}{|rcll|} \hline \dfrac{p}{q} &=& \dfrac{\cos(A)-\cos(B) } {\sin(A)-\sin(B) } \\\\ &=& \dfrac{-2\sin\left(\frac{A+B}{2} \right)\sin\left(\frac{A-B}{2} \right) } { 2\cos\left(\frac{A+B}{2}\right)\sin \left(\frac{A-B}{2} \right) } \\\\ &=& - \tan \left(\frac{A+B}{2} \right) \\ \mathbf{\tan \left(\frac{A+B}{2} \right)} &\mathbf{=}& \mathbf{- \dfrac{p}{q}} \\ \hline \end{array}\)
\(\begin{array}{|rcll|} \hline \sin(A+B) &=& \dfrac{2\cdot \tan \left(\frac{A+B}{2} \right)} {1+\tan^2\left(\frac{A+B}{2} \right) } \\\\ &=& \dfrac{2\cdot \left( \dfrac{-p}{q} \right) } {1+\left( \dfrac{-p}{q} \right)^2 } \\\\ &=& -\dfrac{2\cdot p } {q\left(1+ \dfrac{p^2}{q^2} \right) } \\\\ &=& -\dfrac{2\cdot p } { q+ \dfrac{p^2}{q } } \\\\ \mathbf{\sin(A+B)} &\mathbf{=}& \mathbf{-\dfrac{2pq } { p^2+q^2 } } \\ \hline \end{array}\)
![]()
Thanks very much Heureka,
Those formulae 2 and 3 that you have used, do you have those memorised?
I mean can they be derived easily enough?
I do not remember seeing them before....
Hi Melody
For Example:
\(\begin{array}{|lrclrcl|} \hline (1) & \sin(x+y) &=& \sin(x)\cos(y) +\cos(x)\sin(y) \\ (2) & \sin(x-y) &=& \sin(x)\cos(y) -\cos(x)\sin(y) \\ \\ \hline \\ (1)-(2): & \sin(x+y)-\sin(x-y) &=& \sin(x)\cos(y) +\cos(x)\sin(y) \\ &&&-\Big(\sin(x)\cos(y) -\cos(x)\sin(y)\Big) \\ & \sin(x+y)-\sin(x-y) &=& \sin(x)\cos(y) +\cos(x)\sin(y) \\ &&& -\sin(x)\cos(y) +\cos(x)\sin(y) \\ & \sin(x+y)-\sin(x-y) &=& \cos(x)\sin(y) +\cos(x)\sin(y) \\ & \sin(x+y)-\sin(x-y) &=& 2\cos(x)\sin(y) \\ \\ \hline \\ (3): \mathbf{x+y = A} \\ (4): \mathbf{x-y = B} \\ \\ (3)+(4): & 2x = A+B \\ & \mathbf{x = \dfrac{A+B}{2}} \\\\ (3)-(4): & 2y = A-B \\ & \mathbf{ y = \dfrac{A-B}{2}} \\\\ \hline & \sin(x+y)-\sin(x-y) &=& 2\cos(x)\sin(y) \\ & \sin(A)-\sin(B) &=& 2\cos\left(\dfrac{A+B}{2}\right)\sin\left(\dfrac{A-B}{2} \right) \\ \hline \end{array}\)
![]()