Show that:
(cos x)/(sec x -1) - (cos x)/(sec x + 1) = 2 cos3 x csc2 x
Show that the left equals the right...
(cos x)/(sec x -1) - (cos x)/(sec x + 1) = 2 cos^3 x csc^2 x
Get a common denominator of (secx + 1) (secx - 1) on the left
[cosx (secx + 1) - cosx (secx -1) ] / [ (secx + 1) (secx -1)]
Simplify
[1 + cosx - 1 + cosx] / [sec^2 x - 1]
Remember [ tan2x + 1 = sec^x] .... so.... [ sec^x - 1 = tan^2x]
[2cosx] / [tan^2x] =
[2cosx] / [ sin^2x / cos^2x] =
[2cosx] [cos^2x / sin^2x ] =
2cos^3x * [ 1 / sin^2x] =
2cos^3x * csc^2x
And the left = the right