We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive pseudonymised information about your use of our website. cookie policy and privacy policy.
 
+0  
 
0
109
4
avatar+315 

Trig

 Apr 25, 2019
 #1
avatar+102320 
+2

This one is a little tricky, Cupcake   !!!!

 

Not really kosher, but since we assume that 1 - tan^2x  is not equal to 0, we can multiply both sides by 1 - tan^2x  and get that

 

2tanx  = 1 - tan^2 x      rearrange as

 

tan^2 x + 2 tanx  - 1  = 0       let   tan x  =  m     and we have that

 

m^2 + 2m - 1  = 0

 

m^2 + 2m  =  1      complete the square on m

 

m^2 + 2m + 1  = 1 + 1

 

(m + 1)^2  = 2         take both roots

 

m + 1  = ±√2

 

m = ±√2 - 1

 

So  

 

tan x  = √2 - 1.....take the arctan (√2 - 1)  = m =   22.5°  =  pi/8 + n*pi

 

And

 

tan x  =  - √2 - 1.....take the arctan  (-√2 - 1 )  = x  = -67.5°.....add 180 to this  = 112.5°  = [225/2]°  = (5/4)pi / 2  =

 

(5/8)pi + n * pi

 

 

cool cool cool

 Apr 26, 2019
edited by CPhill  Apr 26, 2019
 #2
avatar+315 
+1

Thank you!! smiley

Cupcake  Apr 26, 2019
 #3
avatar+22883 
+3

 Trigonometric Identities:

 

\(\large\dfrac{2\tan(x)}{1-\tan^2(x)} = 1\)

 

\(\begin{array}{|rcll|} \hline && \mathbf{ \dfrac{2\tan(x)}{1-\tan^2(x)} } \\\\ &=& \dfrac{ \tan(x)+\tan(x)}{1-\tan(x)\tan(x)} \quad | \quad \boxed{ \text{Formula: } \tan(x+y) = \dfrac{\tan(x)+\tan(y)}{1-\tan(x)\tan(y)} } \\\\ &\mathbf{=}& \mathbf{\tan(2x)} \\ \hline \end{array}\)

 

\(\begin{array}{|rcll|} \hline \tan(2x) &=& 1 \\ 2x &=& \arctan(1) + n\pi,\ n \in \mathbb{Z} \quad | \quad \arctan(1) = \dfrac{\pi}{4} \\ 2x &=& \dfrac{\pi}{4} + n\pi \\ \mathbf{x} &\mathbf{=}& \mathbf{\dfrac{\pi}{8} + n\dfrac{\pi}{2}} \\ \hline \end{array}\)

 

\(\text{Split } \mathbf{\dfrac{\pi}{8} + n\dfrac{\pi}{2}}\text{ in two solutions:}\)

\(\begin{array}{|rcll|} \hline x & = & \dfrac{\pi}{8} + n\dfrac{\pi}{2} \\ x_1 &=& \dfrac{\pi}{8} + n\left(\dfrac{\pi}{2}+\dfrac{\pi}{2} \right) \\ \mathbf{x_1} &\mathbf{=}& \mathbf{\dfrac{\pi}{8} + n\pi} \\\\ x_2 &=& \dfrac{\pi}{8}+\dfrac{\pi}{2} + n\left(\dfrac{\pi}{2}+\dfrac{\pi}{2} \right) \\ \mathbf{x_2} &\mathbf{=}& \mathbf{\dfrac{5\pi}{8} + n\pi} \\ \hline \end{array}\)

 

laugh

 Apr 26, 2019
 #4
avatar+315 
+1

Thank you! 

Cupcake  Apr 26, 2019

9 Online Users