+0  
 
0
35
5
avatar+63 

If Sec A - Tan A = x,

 

Prove that Tan½ A =  (1-x)/(1+x)

OldTimer  Oct 31, 2018
 #1
avatar+93866 
+3

Hi Old timer,

 

If Sec A - Tan A = x,          Prove that Tan½ A =  (1-x)/(1+x)

 

let t=tan(A/2)

This is a commonly used parametric substitution (I think that wording is correct :/)

Draw the triangle that goes with it and use Pythagorean theorem to work out the third side.

 

 

 

\(TanA\\ =Tan(\frac{A}{2}+\frac{A}{2})\\ =\frac{2tan\frac{A}{2}}{1-tan^2\frac{A}{2}}\\ =\frac{2t}{1-t^2}\\\)\(cosA\\ =cos(\frac{A}{2}+\frac{A}{2})\\ =cos^2\frac{A}{2}-sin^2\frac{A}{2}\\ =\frac{1}{1+t^2}-\frac{t^2}{1+t^2}\\ =\frac{1-t^2}{1+t^2}\)\(secA=\frac{1+t^2}{1-t^2}\)

 

\(x=secA-tanA\\ x=\frac{1+t^2}{1-t^2}-\frac{2t}{1-t^2}\\ x=\frac{1+t^2-2t}{1-t^2}\\ x=\frac{(1-t)(1-t)}{(1-t)(1+t)}\\ x=\frac{1-t}{1+t}\\ \)

 

ok, now prove that      \(tan\frac{A}{2}=\frac{1-x}{1+x}\)

 

I am going to prve that the RHS=LHS rather than the other way around.

 

\(\frac{1-x}{1+x}\\ =\frac{1-\frac{1-t}{1+t}}{1+\frac{1-t}{1+t}}\\ =[1-\frac{1-t}{1+t}]\div[1+\frac{1-t}{1+t}]\\ =[\frac{1+t-1+t}{1+t}]\div[\frac{1+t+1-t}{1+t}]\\ =[\frac{2t}{1+t}]\times[\frac{1+t}{2}]\\ =t\\ =tan\frac{A}{2}\)

 

 

QED

Melody  Oct 31, 2018
edited by Melody  Oct 31, 2018
 #2
avatar+63 
+2

Thanks Melody..that was a great help and an eye opener...regards! 

OldTimer  Oct 31, 2018
 #3
avatar+93866 
+1

I am very glad I could help :)

Melody  Oct 31, 2018
 #4
avatar+91027 
+1

Very nice, Melody  !!!

 

 

cool cool cool

CPhill  Oct 31, 2018
 #5
avatar+93866 
+1

Thanks Chris :)

Melody  Nov 1, 2018

33 Online Users

avatar

New Privacy Policy

We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive information about your use of our website.
For more information: our cookie policy and privacy policy.