+0  
 
0
978
5
avatar+239 

If Sec A - Tan A = x,

 

Prove that Tan½ A =  (1-x)/(1+x)

 Oct 31, 2018
 #1
avatar+118673 
+3

Hi Old timer,

 

If Sec A - Tan A = x,          Prove that Tan½ A =  (1-x)/(1+x)

 

let t=tan(A/2)

This is a commonly used parametric substitution (I think that wording is correct :/)

Draw the triangle that goes with it and use Pythagorean theorem to work out the third side.

 

 

 

\(TanA\\ =Tan(\frac{A}{2}+\frac{A}{2})\\ =\frac{2tan\frac{A}{2}}{1-tan^2\frac{A}{2}}\\ =\frac{2t}{1-t^2}\\\)\(cosA\\ =cos(\frac{A}{2}+\frac{A}{2})\\ =cos^2\frac{A}{2}-sin^2\frac{A}{2}\\ =\frac{1}{1+t^2}-\frac{t^2}{1+t^2}\\ =\frac{1-t^2}{1+t^2}\)\(secA=\frac{1+t^2}{1-t^2}\)

 

\(x=secA-tanA\\ x=\frac{1+t^2}{1-t^2}-\frac{2t}{1-t^2}\\ x=\frac{1+t^2-2t}{1-t^2}\\ x=\frac{(1-t)(1-t)}{(1-t)(1+t)}\\ x=\frac{1-t}{1+t}\\ \)

 

ok, now prove that      \(tan\frac{A}{2}=\frac{1-x}{1+x}\)

 

I am going to prve that the RHS=LHS rather than the other way around.

 

\(\frac{1-x}{1+x}\\ =\frac{1-\frac{1-t}{1+t}}{1+\frac{1-t}{1+t}}\\ =[1-\frac{1-t}{1+t}]\div[1+\frac{1-t}{1+t}]\\ =[\frac{1+t-1+t}{1+t}]\div[\frac{1+t+1-t}{1+t}]\\ =[\frac{2t}{1+t}]\times[\frac{1+t}{2}]\\ =t\\ =tan\frac{A}{2}\)

 

 

QED

 Oct 31, 2018
edited by Melody  Oct 31, 2018
 #2
avatar+239 
+2

Thanks Melody..that was a great help and an eye opener...regards! 

 Oct 31, 2018
 #3
avatar+118673 
+1

I am very glad I could help :)

Melody  Oct 31, 2018
 #4
avatar+129852 
+1

Very nice, Melody  !!!

 

 

cool cool cool

CPhill  Oct 31, 2018
 #5
avatar+118673 
+1

Thanks Chris :)

Melody  Nov 1, 2018

0 Online Users