+0  
 
+5
687
3
avatar

Find sin A if cos A =7/25

 Feb 23, 2016

Best Answer 

 #3
avatar+26387 
+30

Find sin A if cos A =7/25

 

I. Quadrant:

\(\sin{(A)} = + \sqrt{1-\cos^2{(A)}}\\ \sin{(A)} = + \sqrt{1-(\frac{7}{25})^2}\\ \sin{(A)} = + \sqrt{1-\frac{7^2}{25^2}}\\ \sin{(A)} = + \sqrt{ \frac{25^2-7^2}{25^2}}\\ \sin{(A)} = + \frac{ \sqrt{ 25^2-7^2 } } {25}\\ \sin{(A)} = + \frac{24} {25}\\ \sin{(A)} = 0.96\)

 

IV. Quadrant:

\(\sin{(A)} = - \sqrt{1-\cos^2{(A)}}\\ \sin{(A)} = -\sqrt{1-(\frac{7}{25})^2}\\ \sin{(A)} = - \sqrt{1-\frac{7^2}{25^2}}\\ \sin{(A)} = - \sqrt{ \frac{25^2-7^2}{25^2}}\\ \sin{(A)} = - \frac{ \sqrt{ 25^2-7^2 } } {25}\\ \sin{(A)} = - \frac{24} {25}\\ \sin{(A)} = -0.96\)

 

laugh

 Feb 23, 2016
edited by heureka  Feb 23, 2016
 #1
avatar
0

sin(A)=24/25

 

use sin(A)^2+cos(A)^2=1

or 7^2+24^2=25^2

 Feb 23, 2016
 #2
avatar
0

ok I think I get it thanks

 Feb 23, 2016
 #3
avatar+26387 
+30
Best Answer

Find sin A if cos A =7/25

 

I. Quadrant:

\(\sin{(A)} = + \sqrt{1-\cos^2{(A)}}\\ \sin{(A)} = + \sqrt{1-(\frac{7}{25})^2}\\ \sin{(A)} = + \sqrt{1-\frac{7^2}{25^2}}\\ \sin{(A)} = + \sqrt{ \frac{25^2-7^2}{25^2}}\\ \sin{(A)} = + \frac{ \sqrt{ 25^2-7^2 } } {25}\\ \sin{(A)} = + \frac{24} {25}\\ \sin{(A)} = 0.96\)

 

IV. Quadrant:

\(\sin{(A)} = - \sqrt{1-\cos^2{(A)}}\\ \sin{(A)} = -\sqrt{1-(\frac{7}{25})^2}\\ \sin{(A)} = - \sqrt{1-\frac{7^2}{25^2}}\\ \sin{(A)} = - \sqrt{ \frac{25^2-7^2}{25^2}}\\ \sin{(A)} = - \frac{ \sqrt{ 25^2-7^2 } } {25}\\ \sin{(A)} = - \frac{24} {25}\\ \sin{(A)} = -0.96\)

 

laugh

heureka Feb 23, 2016
edited by heureka  Feb 23, 2016

0 Online Users