(sin a)2 + (cos a)2= 1
(-4/5 )2 + (cos a)2 = 1
\({\cos a = \sqrt{1-(-\frac{4}{5})^2}=\sqrt{1-\frac{16}{25}}=\sqrt{\frac9{25}}=\frac35}\)
(sin b)2 + (cos b)2= 1
(5/13)2 + (cos b)2 = 1
\({\cos b =\sqrt{1-(\frac{5}{13})^2} = \sqrt{1-\frac{25}{169}}=\sqrt{\frac{144}{169}}=\frac{12}{13} }\)
cos(a - b) = (cos a)(cos b) + (sin a)(sin b)
cos(a - b) = (3/5)(12/13) + (-4/5)(5/13)
cos(a - b) = 36/65 - 4/13
cos(a - b) = 16/65