+0

# Trigonometry

0
126
3

Given that $$A_k = \frac {k(k - 1)}2\cos\frac {k(k - 1)\pi}2,$$ find $$A_{19} + A_{20} + \cdots + A_{98}.$$

Aug 2, 2022

#1
+504
0

$$\frac{k(k-1)}{2}$$ is really just the sum of integers from 1 to k-1, and the cosine of some integer multiple $$\pi$$ oscillates between -1 and 1 (if the integer is even, it's 1, and if it's odd, it's -1). Here, the sum alternates 2 negatives and 2 positives (starting with k=19)

This means that the first 4 terms of the sum are

$$-(1+2+3+\cdots+18)-(1+2+3+\cdots+19)+(1+2+3+\cdots+20)+(1+2+3+\cdots+21) \\=20+19+20+21 \\=4(20)$$

(notice a bunch of cancellation happens between the sums, as the 1+2+3+...18 is repeated throughout all the 4 terms)

So for every group of 4 terms, the sum of the group is the biggest number of the sum of the 3rd term of that group times 4.

Therefore, the sum is:

$$4(20+24+28+\cdots+96)$$

Aug 2, 2022
#2
+1

We want to compute $$\cos \frac{k(k - 1) \pi}{2}$$ for various intergers k. The first values are as follows:

$$\begin{array}{c|c} k & \cos \frac{k(k - 1) \pi}{2} \\ \hline 1 & 1 \\ 2 & -1 \\ 3 & -1 \\ 4 & 1 \\ 5 & 1 \\ 6 & -1 \\ 7 & -1 \\ 8 & 1 \end{array}$$

The values seem to be periodic with period 4. If we let $$f(k) = \frac{k(k - 1) \pi}{2},$$ then

$$f(k + 4) - f(k) = \frac{(k + 4)(k + 3) \pi}{2} - \frac{k(k - 1) \pi}{2} = (4k + 6) \pi \\ = (2k + 3) \cdot 2 \pi$$

Since f(k+4) and f(k) differ by a mutiple of $$2 \pi$$$$\cos f(k)$$ is indeed period with period of 4. So for a positive integer m,

$$A_{4m - 1} = \frac{(4m - 1)(4m - 2)}{2} \cos f(4m - 1) = -\frac{(4m - 1)(4m - 2)}{2}, \\ A_{4m} = \frac{(4m)(4m - 1)}{2} \cos f(4m) = \frac{(4m)(4m - 1)}{2}, \\ A_{4m + 1} = \frac{(4m + 1)(4m)}{2} \cos f(4m + 1) = \frac{(4m + 1)(4m)}{2}, \\ A_{4m + 2} = \frac{(4m + 2)(4m + 1)}{2} \cos f(4m + 2) = -\frac{(4m + 2)(4m + 1)}{2},$$

Therefore:

$$A_{4m - 1} + A_{4m} + A_{4m + 1} + A_{4m + 2} = -\frac{(4m - 1)(4m - 2)}{2} + \frac{(4m)(4m - 1)}{2} + \frac{(4m + 1)(4m)}{2} - \frac{(4m + 2)(4m + 1)}{2} = -2.$$

Summing over $$5 \le m \le 24,$$ we find that $$A_{19} + A_{20} + \dots + A_{98} = 20(-2) = \boxed{-40}.$$

Aug 3, 2022
#3
+504
0

thanks guest, my answer is very far off lol

textot  Aug 3, 2022